Properties

Label 2040.1213
Modulus $2040$
Conductor $680$
Order $16$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2040, base_ring=CyclotomicField(16)) M = H._module chi = DirichletCharacter(H, M([0,8,0,12,15]))
 
Copy content pari:[g,chi] = znchar(Mod(1213,2040))
 

Basic properties

Modulus: \(2040\)
Conductor: \(680\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(16\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{680}(533,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2040.ek

\(\chi_{2040}(37,\cdot)\) \(\chi_{2040}(277,\cdot)\) \(\chi_{2040}(1117,\cdot)\) \(\chi_{2040}(1213,\cdot)\) \(\chi_{2040}(1333,\cdot)\) \(\chi_{2040}(1357,\cdot)\) \(\chi_{2040}(1693,\cdot)\) \(\chi_{2040}(1813,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: 16.16.11724484818984205488128000000000000.1

Values on generators

\((511,1021,1361,817,241)\) → \((1,-1,1,-i,e\left(\frac{15}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 2040 }(1213, a) \) \(1\)\(1\)\(e\left(\frac{1}{16}\right)\)\(e\left(\frac{1}{16}\right)\)\(-1\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{5}{16}\right)\)\(e\left(\frac{3}{16}\right)\)\(e\left(\frac{7}{16}\right)\)\(e\left(\frac{3}{16}\right)\)\(e\left(\frac{5}{16}\right)\)\(e\left(\frac{5}{8}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2040 }(1213,a) \;\) at \(\;a = \) e.g. 2