sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2032, base_ring=CyclotomicField(252))
M = H._module
chi = DirichletCharacter(H, M([126,189,46]))
pari:[g,chi] = znchar(Mod(83,2032))
| Modulus: | \(2032\) | |
| Conductor: | \(2032\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(252\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2032}(3,\cdot)\)
\(\chi_{2032}(43,\cdot)\)
\(\chi_{2032}(67,\cdot)\)
\(\chi_{2032}(83,\cdot)\)
\(\chi_{2032}(91,\cdot)\)
\(\chi_{2032}(139,\cdot)\)
\(\chi_{2032}(219,\cdot)\)
\(\chi_{2032}(243,\cdot)\)
\(\chi_{2032}(283,\cdot)\)
\(\chi_{2032}(299,\cdot)\)
\(\chi_{2032}(307,\cdot)\)
\(\chi_{2032}(339,\cdot)\)
\(\chi_{2032}(347,\cdot)\)
\(\chi_{2032}(355,\cdot)\)
\(\chi_{2032}(363,\cdot)\)
\(\chi_{2032}(387,\cdot)\)
\(\chi_{2032}(395,\cdot)\)
\(\chi_{2032}(427,\cdot)\)
\(\chi_{2032}(459,\cdot)\)
\(\chi_{2032}(467,\cdot)\)
\(\chi_{2032}(491,\cdot)\)
\(\chi_{2032}(499,\cdot)\)
\(\chi_{2032}(515,\cdot)\)
\(\chi_{2032}(531,\cdot)\)
\(\chi_{2032}(547,\cdot)\)
\(\chi_{2032}(563,\cdot)\)
\(\chi_{2032}(683,\cdot)\)
\(\chi_{2032}(691,\cdot)\)
\(\chi_{2032}(731,\cdot)\)
\(\chi_{2032}(747,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((255,1525,257)\) → \((-1,-i,e\left(\frac{23}{126}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
| \( \chi_{ 2032 }(83, a) \) |
\(1\) | \(1\) | \(e\left(\frac{235}{252}\right)\) | \(e\left(\frac{53}{84}\right)\) | \(e\left(\frac{125}{126}\right)\) | \(e\left(\frac{109}{126}\right)\) | \(e\left(\frac{167}{252}\right)\) | \(e\left(\frac{103}{252}\right)\) | \(e\left(\frac{71}{126}\right)\) | \(e\left(\frac{59}{63}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{233}{252}\right)\) |
sage:chi.jacobi_sum(n)