Properties

Label 2032.1375
Modulus $2032$
Conductor $508$
Order $18$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2032, base_ring=CyclotomicField(18)) M = H._module chi = DirichletCharacter(H, M([9,0,11]))
 
Copy content pari:[g,chi] = znchar(Mod(1375,2032))
 

Basic properties

Modulus: \(2032\)
Conductor: \(508\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(18\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{508}(359,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2032.bm

\(\chi_{2032}(1167,\cdot)\) \(\chi_{2032}(1375,\cdot)\) \(\chi_{2032}(1487,\cdot)\) \(\chi_{2032}(1583,\cdot)\) \(\chi_{2032}(1599,\cdot)\) \(\chi_{2032}(1679,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: 18.18.152476592598220891378444911983592589754368.1

Values on generators

\((255,1525,257)\) → \((-1,1,e\left(\frac{11}{18}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 2032 }(1375, a) \) \(1\)\(1\)\(e\left(\frac{1}{9}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{2}{9}\right)\)\(e\left(\frac{1}{18}\right)\)\(e\left(\frac{4}{9}\right)\)\(e\left(\frac{5}{18}\right)\)\(e\left(\frac{2}{9}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{8}{9}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2032 }(1375,a) \;\) at \(\;a = \) e.g. 2