Properties

Label 2032.1057
Modulus $2032$
Conductor $127$
Order $63$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2032, base_ring=CyclotomicField(126)) M = H._module chi = DirichletCharacter(H, M([0,0,80]))
 
Copy content pari:[g,chi] = znchar(Mod(1057,2032))
 

Basic properties

Modulus: \(2032\)
Conductor: \(127\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(63\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{127}(41,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2032.ce

\(\chi_{2032}(17,\cdot)\) \(\chi_{2032}(49,\cdot)\) \(\chi_{2032}(81,\cdot)\) \(\chi_{2032}(113,\cdot)\) \(\chi_{2032}(145,\cdot)\) \(\chi_{2032}(161,\cdot)\) \(\chi_{2032}(209,\cdot)\) \(\chi_{2032}(225,\cdot)\) \(\chi_{2032}(289,\cdot)\) \(\chi_{2032}(369,\cdot)\) \(\chi_{2032}(417,\cdot)\) \(\chi_{2032}(465,\cdot)\) \(\chi_{2032}(529,\cdot)\) \(\chi_{2032}(577,\cdot)\) \(\chi_{2032}(705,\cdot)\) \(\chi_{2032}(833,\cdot)\) \(\chi_{2032}(961,\cdot)\) \(\chi_{2032}(977,\cdot)\) \(\chi_{2032}(993,\cdot)\) \(\chi_{2032}(1009,\cdot)\) \(\chi_{2032}(1025,\cdot)\) \(\chi_{2032}(1057,\cdot)\) \(\chi_{2032}(1137,\cdot)\) \(\chi_{2032}(1169,\cdot)\) \(\chi_{2032}(1185,\cdot)\) \(\chi_{2032}(1217,\cdot)\) \(\chi_{2032}(1281,\cdot)\) \(\chi_{2032}(1441,\cdot)\) \(\chi_{2032}(1457,\cdot)\) \(\chi_{2032}(1521,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{63})$
Fixed field: Number field defined by a degree 63 polynomial

Values on generators

\((255,1525,257)\) → \((1,1,e\left(\frac{40}{63}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 2032 }(1057, a) \) \(1\)\(1\)\(e\left(\frac{40}{63}\right)\)\(e\left(\frac{5}{21}\right)\)\(e\left(\frac{1}{63}\right)\)\(e\left(\frac{17}{63}\right)\)\(e\left(\frac{11}{63}\right)\)\(e\left(\frac{43}{63}\right)\)\(e\left(\frac{55}{63}\right)\)\(e\left(\frac{8}{63}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{41}{63}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2032 }(1057,a) \;\) at \(\;a = \) e.g. 2