Properties

Label 2032.1323
Modulus $2032$
Conductor $2032$
Order $252$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2032, base_ring=CyclotomicField(252)) M = H._module chi = DirichletCharacter(H, M([126,63,214]))
 
Copy content pari:[g,chi] = znchar(Mod(1323,2032))
 

Basic properties

Modulus: \(2032\)
Conductor: \(2032\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(252\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2032.cq

\(\chi_{2032}(3,\cdot)\) \(\chi_{2032}(43,\cdot)\) \(\chi_{2032}(67,\cdot)\) \(\chi_{2032}(83,\cdot)\) \(\chi_{2032}(91,\cdot)\) \(\chi_{2032}(139,\cdot)\) \(\chi_{2032}(219,\cdot)\) \(\chi_{2032}(243,\cdot)\) \(\chi_{2032}(283,\cdot)\) \(\chi_{2032}(299,\cdot)\) \(\chi_{2032}(307,\cdot)\) \(\chi_{2032}(339,\cdot)\) \(\chi_{2032}(347,\cdot)\) \(\chi_{2032}(355,\cdot)\) \(\chi_{2032}(363,\cdot)\) \(\chi_{2032}(387,\cdot)\) \(\chi_{2032}(395,\cdot)\) \(\chi_{2032}(427,\cdot)\) \(\chi_{2032}(459,\cdot)\) \(\chi_{2032}(467,\cdot)\) \(\chi_{2032}(491,\cdot)\) \(\chi_{2032}(499,\cdot)\) \(\chi_{2032}(515,\cdot)\) \(\chi_{2032}(531,\cdot)\) \(\chi_{2032}(547,\cdot)\) \(\chi_{2032}(563,\cdot)\) \(\chi_{2032}(683,\cdot)\) \(\chi_{2032}(691,\cdot)\) \(\chi_{2032}(731,\cdot)\) \(\chi_{2032}(747,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{252})$
Fixed field: Number field defined by a degree 252 polynomial (not computed)

Values on generators

\((255,1525,257)\) → \((-1,i,e\left(\frac{107}{126}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 2032 }(1323, a) \) \(1\)\(1\)\(e\left(\frac{25}{252}\right)\)\(e\left(\frac{11}{84}\right)\)\(e\left(\frac{83}{126}\right)\)\(e\left(\frac{25}{126}\right)\)\(e\left(\frac{125}{252}\right)\)\(e\left(\frac{145}{252}\right)\)\(e\left(\frac{29}{126}\right)\)\(e\left(\frac{17}{63}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{191}{252}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2032 }(1323,a) \;\) at \(\;a = \) e.g. 2