![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2032, base_ring=CyclotomicField(252))
M = H._module
chi = DirichletCharacter(H, M([126,63,62]))
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2032, base_ring=CyclotomicField(252))
M = H._module
chi = DirichletCharacter(H, M([126,63,62]))
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(1003,2032))
        pari:[g,chi] = znchar(Mod(1003,2032))
         
     
    
  
   | Modulus: | \(2032\) |  | 
   | Conductor: | \(2032\) | 
        ![Copy content]() sage:chi.conductor()   
        ![Copy content]() pari:znconreyconductor(g,chi)   | 
   | Order: | \(252\) | 
        ![Copy content]() sage:chi.multiplicative_order()   
        ![Copy content]() pari:charorder(g,chi)   | 
   | Real: | no | 
   | Primitive: | yes | 
        ![Copy content]() sage:chi.is_primitive()   
        ![Copy content]() pari:#znconreyconductor(g,chi)==1   | 
     | Minimal: | yes | 
       | Parity: | even | 
        ![Copy content]() sage:chi.is_odd()   
        ![Copy content]() pari:zncharisodd(g,chi)   | 
   
  \(\chi_{2032}(3,\cdot)\)
  \(\chi_{2032}(43,\cdot)\)
  \(\chi_{2032}(67,\cdot)\)
  \(\chi_{2032}(83,\cdot)\)
  \(\chi_{2032}(91,\cdot)\)
  \(\chi_{2032}(139,\cdot)\)
  \(\chi_{2032}(219,\cdot)\)
  \(\chi_{2032}(243,\cdot)\)
  \(\chi_{2032}(283,\cdot)\)
  \(\chi_{2032}(299,\cdot)\)
  \(\chi_{2032}(307,\cdot)\)
  \(\chi_{2032}(339,\cdot)\)
  \(\chi_{2032}(347,\cdot)\)
  \(\chi_{2032}(355,\cdot)\)
  \(\chi_{2032}(363,\cdot)\)
  \(\chi_{2032}(387,\cdot)\)
  \(\chi_{2032}(395,\cdot)\)
  \(\chi_{2032}(427,\cdot)\)
  \(\chi_{2032}(459,\cdot)\)
  \(\chi_{2032}(467,\cdot)\)
  \(\chi_{2032}(491,\cdot)\)
  \(\chi_{2032}(499,\cdot)\)
  \(\chi_{2032}(515,\cdot)\)
  \(\chi_{2032}(531,\cdot)\)
  \(\chi_{2032}(547,\cdot)\)
  \(\chi_{2032}(563,\cdot)\)
  \(\chi_{2032}(683,\cdot)\)
  \(\chi_{2032}(691,\cdot)\)
  \(\chi_{2032}(731,\cdot)\)
  \(\chi_{2032}(747,\cdot)\)
 ... 
    
        ![Copy content]() sage:chi.galois_orbit()
        sage:chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((255,1525,257)\) → \((-1,i,e\left(\frac{31}{126}\right))\)
  
    
      
        | \(a\) | \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) | 
    
    
      | \( \chi_{ 2032 }(1003, a) \) | \(1\) | \(1\) | \(e\left(\frac{125}{252}\right)\) | \(e\left(\frac{55}{84}\right)\) | \(e\left(\frac{37}{126}\right)\) | \(e\left(\frac{125}{126}\right)\) | \(e\left(\frac{121}{252}\right)\) | \(e\left(\frac{221}{252}\right)\) | \(e\left(\frac{19}{126}\right)\) | \(e\left(\frac{22}{63}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{199}{252}\right)\) | 
  
 
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)