Properties

Label 2028.v
Modulus $2028$
Conductor $156$
Order $12$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2028, base_ring=CyclotomicField(12)) M = H._module chi = DirichletCharacter(H, M([6,6,1])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(587,2028)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(2028\)
Conductor: \(156\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(12\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 156.v
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.0.5351362262028177408.1

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(7\) \(11\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\) \(35\)
\(\chi_{2028}(587,\cdot)\) \(-1\) \(1\) \(i\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(i\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{2028}(695,\cdot)\) \(-1\) \(1\) \(i\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(i\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{2028}(995,\cdot)\) \(-1\) \(1\) \(-i\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(-i\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{2028}(1103,\cdot)\) \(-1\) \(1\) \(-i\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(-i\) \(e\left(\frac{2}{3}\right)\)