Properties

Label 2028.97
Modulus $2028$
Conductor $169$
Order $156$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2028, base_ring=CyclotomicField(156)) M = H._module chi = DirichletCharacter(H, M([0,0,17]))
 
Copy content pari:[g,chi] = znchar(Mod(97,2028))
 

Basic properties

Modulus: \(2028\)
Conductor: \(169\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(156\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{169}(97,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2028.bt

\(\chi_{2028}(37,\cdot)\) \(\chi_{2028}(85,\cdot)\) \(\chi_{2028}(97,\cdot)\) \(\chi_{2028}(145,\cdot)\) \(\chi_{2028}(193,\cdot)\) \(\chi_{2028}(241,\cdot)\) \(\chi_{2028}(253,\cdot)\) \(\chi_{2028}(301,\cdot)\) \(\chi_{2028}(349,\cdot)\) \(\chi_{2028}(397,\cdot)\) \(\chi_{2028}(409,\cdot)\) \(\chi_{2028}(457,\cdot)\) \(\chi_{2028}(505,\cdot)\) \(\chi_{2028}(553,\cdot)\) \(\chi_{2028}(565,\cdot)\) \(\chi_{2028}(613,\cdot)\) \(\chi_{2028}(661,\cdot)\) \(\chi_{2028}(709,\cdot)\) \(\chi_{2028}(721,\cdot)\) \(\chi_{2028}(769,\cdot)\) \(\chi_{2028}(817,\cdot)\) \(\chi_{2028}(865,\cdot)\) \(\chi_{2028}(877,\cdot)\) \(\chi_{2028}(973,\cdot)\) \(\chi_{2028}(1021,\cdot)\) \(\chi_{2028}(1081,\cdot)\) \(\chi_{2028}(1129,\cdot)\) \(\chi_{2028}(1177,\cdot)\) \(\chi_{2028}(1189,\cdot)\) \(\chi_{2028}(1237,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{156})$
Fixed field: Number field defined by a degree 156 polynomial (not computed)

Values on generators

\((1015,677,1861)\) → \((1,1,e\left(\frac{17}{156}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 2028 }(97, a) \) \(-1\)\(1\)\(e\left(\frac{51}{52}\right)\)\(e\left(\frac{103}{156}\right)\)\(e\left(\frac{35}{156}\right)\)\(e\left(\frac{71}{78}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{25}{26}\right)\)\(e\left(\frac{14}{39}\right)\)\(e\left(\frac{15}{52}\right)\)\(e\left(\frac{25}{39}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2028 }(97,a) \;\) at \(\;a = \) e.g. 2