sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2028, base_ring=CyclotomicField(156))
M = H._module
chi = DirichletCharacter(H, M([0,0,17]))
pari:[g,chi] = znchar(Mod(97,2028))
\(\chi_{2028}(37,\cdot)\)
\(\chi_{2028}(85,\cdot)\)
\(\chi_{2028}(97,\cdot)\)
\(\chi_{2028}(145,\cdot)\)
\(\chi_{2028}(193,\cdot)\)
\(\chi_{2028}(241,\cdot)\)
\(\chi_{2028}(253,\cdot)\)
\(\chi_{2028}(301,\cdot)\)
\(\chi_{2028}(349,\cdot)\)
\(\chi_{2028}(397,\cdot)\)
\(\chi_{2028}(409,\cdot)\)
\(\chi_{2028}(457,\cdot)\)
\(\chi_{2028}(505,\cdot)\)
\(\chi_{2028}(553,\cdot)\)
\(\chi_{2028}(565,\cdot)\)
\(\chi_{2028}(613,\cdot)\)
\(\chi_{2028}(661,\cdot)\)
\(\chi_{2028}(709,\cdot)\)
\(\chi_{2028}(721,\cdot)\)
\(\chi_{2028}(769,\cdot)\)
\(\chi_{2028}(817,\cdot)\)
\(\chi_{2028}(865,\cdot)\)
\(\chi_{2028}(877,\cdot)\)
\(\chi_{2028}(973,\cdot)\)
\(\chi_{2028}(1021,\cdot)\)
\(\chi_{2028}(1081,\cdot)\)
\(\chi_{2028}(1129,\cdot)\)
\(\chi_{2028}(1177,\cdot)\)
\(\chi_{2028}(1189,\cdot)\)
\(\chi_{2028}(1237,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1015,677,1861)\) → \((1,1,e\left(\frac{17}{156}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
| \( \chi_{ 2028 }(97, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{51}{52}\right)\) | \(e\left(\frac{103}{156}\right)\) | \(e\left(\frac{35}{156}\right)\) | \(e\left(\frac{71}{78}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{25}{26}\right)\) | \(e\left(\frac{14}{39}\right)\) | \(e\left(\frac{15}{52}\right)\) | \(e\left(\frac{25}{39}\right)\) |
sage:chi.jacobi_sum(n)