sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2028, base_ring=CyclotomicField(4))
M = H._module
chi = DirichletCharacter(H, M([2,2,3]))
pari:[g,chi] = znchar(Mod(239,2028))
\(\chi_{2028}(239,\cdot)\)
\(\chi_{2028}(1451,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1015,677,1861)\) → \((-1,-1,-i)\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
\( \chi_{ 2028 }(239, a) \) |
\(-1\) | \(1\) | \(i\) | \(-i\) | \(i\) | \(1\) | \(i\) | \(-1\) | \(-1\) | \(-1\) | \(i\) | \(1\) |
sage:chi.jacobi_sum(n)