sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2028, base_ring=CyclotomicField(26))
M = H._module
chi = DirichletCharacter(H, M([13,0,22]))
pari:[g,chi] = znchar(Mod(1951,2028))
\(\chi_{2028}(79,\cdot)\)
\(\chi_{2028}(235,\cdot)\)
\(\chi_{2028}(391,\cdot)\)
\(\chi_{2028}(547,\cdot)\)
\(\chi_{2028}(703,\cdot)\)
\(\chi_{2028}(859,\cdot)\)
\(\chi_{2028}(1171,\cdot)\)
\(\chi_{2028}(1327,\cdot)\)
\(\chi_{2028}(1483,\cdot)\)
\(\chi_{2028}(1639,\cdot)\)
\(\chi_{2028}(1795,\cdot)\)
\(\chi_{2028}(1951,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1015,677,1861)\) → \((-1,1,e\left(\frac{11}{13}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
\( \chi_{ 2028 }(1951, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{1}{26}\right)\) | \(e\left(\frac{17}{26}\right)\) | \(e\left(\frac{7}{13}\right)\) | \(-1\) | \(-1\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{7}{26}\right)\) | \(e\left(\frac{17}{26}\right)\) |
sage:chi.jacobi_sum(n)