sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2028, base_ring=CyclotomicField(52))
M = H._module
chi = DirichletCharacter(H, M([26,26,9]))
pari:[g,chi] = znchar(Mod(1139,2028))
Modulus: | \(2028\) | |
Conductor: | \(2028\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(52\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2028}(47,\cdot)\)
\(\chi_{2028}(83,\cdot)\)
\(\chi_{2028}(203,\cdot)\)
\(\chi_{2028}(359,\cdot)\)
\(\chi_{2028}(395,\cdot)\)
\(\chi_{2028}(515,\cdot)\)
\(\chi_{2028}(551,\cdot)\)
\(\chi_{2028}(671,\cdot)\)
\(\chi_{2028}(707,\cdot)\)
\(\chi_{2028}(827,\cdot)\)
\(\chi_{2028}(863,\cdot)\)
\(\chi_{2028}(983,\cdot)\)
\(\chi_{2028}(1019,\cdot)\)
\(\chi_{2028}(1139,\cdot)\)
\(\chi_{2028}(1175,\cdot)\)
\(\chi_{2028}(1295,\cdot)\)
\(\chi_{2028}(1331,\cdot)\)
\(\chi_{2028}(1487,\cdot)\)
\(\chi_{2028}(1607,\cdot)\)
\(\chi_{2028}(1643,\cdot)\)
\(\chi_{2028}(1763,\cdot)\)
\(\chi_{2028}(1799,\cdot)\)
\(\chi_{2028}(1919,\cdot)\)
\(\chi_{2028}(1955,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1015,677,1861)\) → \((-1,-1,e\left(\frac{9}{52}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
\( \chi_{ 2028 }(1139, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{3}{52}\right)\) | \(e\left(\frac{1}{52}\right)\) | \(e\left(\frac{43}{52}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(-i\) | \(-1\) | \(e\left(\frac{3}{26}\right)\) | \(e\left(\frac{11}{26}\right)\) | \(e\left(\frac{7}{52}\right)\) | \(e\left(\frac{1}{13}\right)\) |
sage:chi.jacobi_sum(n)