Properties

Label 2028.101
Modulus $2028$
Conductor $507$
Order $78$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2028, base_ring=CyclotomicField(78)) M = H._module chi = DirichletCharacter(H, M([0,39,35]))
 
Copy content pari:[g,chi] = znchar(Mod(101,2028))
 

Basic properties

Modulus: \(2028\)
Conductor: \(507\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(78\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{507}(101,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2028.bm

\(\chi_{2028}(17,\cdot)\) \(\chi_{2028}(101,\cdot)\) \(\chi_{2028}(173,\cdot)\) \(\chi_{2028}(257,\cdot)\) \(\chi_{2028}(329,\cdot)\) \(\chi_{2028}(413,\cdot)\) \(\chi_{2028}(569,\cdot)\) \(\chi_{2028}(641,\cdot)\) \(\chi_{2028}(725,\cdot)\) \(\chi_{2028}(797,\cdot)\) \(\chi_{2028}(881,\cdot)\) \(\chi_{2028}(953,\cdot)\) \(\chi_{2028}(1109,\cdot)\) \(\chi_{2028}(1193,\cdot)\) \(\chi_{2028}(1265,\cdot)\) \(\chi_{2028}(1349,\cdot)\) \(\chi_{2028}(1421,\cdot)\) \(\chi_{2028}(1505,\cdot)\) \(\chi_{2028}(1577,\cdot)\) \(\chi_{2028}(1661,\cdot)\) \(\chi_{2028}(1733,\cdot)\) \(\chi_{2028}(1817,\cdot)\) \(\chi_{2028}(1889,\cdot)\) \(\chi_{2028}(1973,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{39})$
Fixed field: Number field defined by a degree 78 polynomial

Values on generators

\((1015,677,1861)\) → \((1,-1,e\left(\frac{35}{78}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 2028 }(101, a) \) \(-1\)\(1\)\(e\left(\frac{7}{13}\right)\)\(e\left(\frac{1}{78}\right)\)\(e\left(\frac{28}{39}\right)\)\(e\left(\frac{1}{78}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{1}{13}\right)\)\(e\left(\frac{35}{78}\right)\)\(e\left(\frac{11}{26}\right)\)\(e\left(\frac{43}{78}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2028 }(101,a) \;\) at \(\;a = \) e.g. 2