sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2028, base_ring=CyclotomicField(78))
M = H._module
chi = DirichletCharacter(H, M([0,39,35]))
pari:[g,chi] = znchar(Mod(101,2028))
\(\chi_{2028}(17,\cdot)\)
\(\chi_{2028}(101,\cdot)\)
\(\chi_{2028}(173,\cdot)\)
\(\chi_{2028}(257,\cdot)\)
\(\chi_{2028}(329,\cdot)\)
\(\chi_{2028}(413,\cdot)\)
\(\chi_{2028}(569,\cdot)\)
\(\chi_{2028}(641,\cdot)\)
\(\chi_{2028}(725,\cdot)\)
\(\chi_{2028}(797,\cdot)\)
\(\chi_{2028}(881,\cdot)\)
\(\chi_{2028}(953,\cdot)\)
\(\chi_{2028}(1109,\cdot)\)
\(\chi_{2028}(1193,\cdot)\)
\(\chi_{2028}(1265,\cdot)\)
\(\chi_{2028}(1349,\cdot)\)
\(\chi_{2028}(1421,\cdot)\)
\(\chi_{2028}(1505,\cdot)\)
\(\chi_{2028}(1577,\cdot)\)
\(\chi_{2028}(1661,\cdot)\)
\(\chi_{2028}(1733,\cdot)\)
\(\chi_{2028}(1817,\cdot)\)
\(\chi_{2028}(1889,\cdot)\)
\(\chi_{2028}(1973,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1015,677,1861)\) → \((1,-1,e\left(\frac{35}{78}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
\( \chi_{ 2028 }(101, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{1}{78}\right)\) | \(e\left(\frac{28}{39}\right)\) | \(e\left(\frac{1}{78}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{35}{78}\right)\) | \(e\left(\frac{11}{26}\right)\) | \(e\left(\frac{43}{78}\right)\) |
sage:chi.jacobi_sum(n)