Properties

Label 1984.977
Modulus $1984$
Conductor $496$
Order $20$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1984, base_ring=CyclotomicField(20)) M = H._module chi = DirichletCharacter(H, M([0,15,4]))
 
Copy content pari:[g,chi] = znchar(Mod(977,1984))
 

Basic properties

Modulus: \(1984\)
Conductor: \(496\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(20\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{496}(109,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1984.br

\(\chi_{1984}(529,\cdot)\) \(\chi_{1984}(593,\cdot)\) \(\chi_{1984}(721,\cdot)\) \(\chi_{1984}(977,\cdot)\) \(\chi_{1984}(1521,\cdot)\) \(\chi_{1984}(1585,\cdot)\) \(\chi_{1984}(1713,\cdot)\) \(\chi_{1984}(1969,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: Number field defined by a degree 20 polynomial

Values on generators

\((63,1861,65)\) → \((1,-i,e\left(\frac{1}{5}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 1984 }(977, a) \) \(1\)\(1\)\(e\left(\frac{9}{20}\right)\)\(-i\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{7}{20}\right)\)\(e\left(\frac{9}{20}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{1}{20}\right)\)\(e\left(\frac{11}{20}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1984 }(977,a) \;\) at \(\;a = \) e.g. 2