sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1984, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([0,15,26]))
pari:[g,chi] = znchar(Mod(545,1984))
\(\chi_{1984}(289,\cdot)\)
\(\chi_{1984}(417,\cdot)\)
\(\chi_{1984}(545,\cdot)\)
\(\chi_{1984}(609,\cdot)\)
\(\chi_{1984}(865,\cdot)\)
\(\chi_{1984}(1185,\cdot)\)
\(\chi_{1984}(1249,\cdot)\)
\(\chi_{1984}(1569,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((63,1861,65)\) → \((1,-1,e\left(\frac{13}{15}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
\( \chi_{ 1984 }(545, a) \) |
\(1\) | \(1\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{19}{30}\right)\) |
sage:chi.jacobi_sum(n)