sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1984, base_ring=CyclotomicField(240))
M = H._module
chi = DirichletCharacter(H, M([0,105,128]))
pari:[g,chi] = znchar(Mod(493,1984))
| Modulus: | \(1984\) | |
| Conductor: | \(1984\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(240\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1984}(45,\cdot)\)
\(\chi_{1984}(69,\cdot)\)
\(\chi_{1984}(133,\cdot)\)
\(\chi_{1984}(165,\cdot)\)
\(\chi_{1984}(173,\cdot)\)
\(\chi_{1984}(205,\cdot)\)
\(\chi_{1984}(237,\cdot)\)
\(\chi_{1984}(245,\cdot)\)
\(\chi_{1984}(293,\cdot)\)
\(\chi_{1984}(317,\cdot)\)
\(\chi_{1984}(381,\cdot)\)
\(\chi_{1984}(413,\cdot)\)
\(\chi_{1984}(421,\cdot)\)
\(\chi_{1984}(453,\cdot)\)
\(\chi_{1984}(485,\cdot)\)
\(\chi_{1984}(493,\cdot)\)
\(\chi_{1984}(541,\cdot)\)
\(\chi_{1984}(565,\cdot)\)
\(\chi_{1984}(629,\cdot)\)
\(\chi_{1984}(661,\cdot)\)
\(\chi_{1984}(669,\cdot)\)
\(\chi_{1984}(701,\cdot)\)
\(\chi_{1984}(733,\cdot)\)
\(\chi_{1984}(741,\cdot)\)
\(\chi_{1984}(789,\cdot)\)
\(\chi_{1984}(813,\cdot)\)
\(\chi_{1984}(877,\cdot)\)
\(\chi_{1984}(909,\cdot)\)
\(\chi_{1984}(917,\cdot)\)
\(\chi_{1984}(949,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((63,1861,65)\) → \((1,e\left(\frac{7}{16}\right),e\left(\frac{8}{15}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
| \( \chi_{ 1984 }(493, a) \) |
\(1\) | \(1\) | \(e\left(\frac{203}{240}\right)\) | \(e\left(\frac{5}{48}\right)\) | \(e\left(\frac{37}{120}\right)\) | \(e\left(\frac{83}{120}\right)\) | \(e\left(\frac{109}{240}\right)\) | \(e\left(\frac{103}{240}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{59}{60}\right)\) | \(e\left(\frac{47}{240}\right)\) | \(e\left(\frac{37}{240}\right)\) |
sage:chi.jacobi_sum(n)