![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1984, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([15,0,19]))
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1984, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([15,0,19]))
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(1407,1984))
        pari:[g,chi] = znchar(Mod(1407,1984))
         
     
    
  \(\chi_{1984}(127,\cdot)\)
  \(\chi_{1984}(383,\cdot)\)
  \(\chi_{1984}(447,\cdot)\)
  \(\chi_{1984}(575,\cdot)\)
  \(\chi_{1984}(703,\cdot)\)
  \(\chi_{1984}(1407,\cdot)\)
  \(\chi_{1984}(1727,\cdot)\)
  \(\chi_{1984}(1791,\cdot)\)
    
        ![Copy content]() sage:chi.galois_orbit()
        sage:chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((63,1861,65)\) → \((-1,1,e\left(\frac{19}{30}\right))\)
  
    
      
        | \(a\) | \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) | 
    
    
      | \( \chi_{ 1984 }(1407, a) \) | \(1\) | \(1\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{11}{30}\right)\) | 
  
 
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)