Properties

Label 1984.1359
Modulus $1984$
Conductor $496$
Order $12$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1984, base_ring=CyclotomicField(12)) M = H._module chi = DirichletCharacter(H, M([6,3,2]))
 
Copy content pari:[g,chi] = znchar(Mod(1359,1984))
 

Basic properties

Modulus: \(1984\)
Conductor: \(496\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(12\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{496}(491,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1984.bh

\(\chi_{1984}(367,\cdot)\) \(\chi_{1984}(719,\cdot)\) \(\chi_{1984}(1359,\cdot)\) \(\chi_{1984}(1711,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.12.7040553374918085749768192.4

Values on generators

\((63,1861,65)\) → \((-1,i,e\left(\frac{1}{6}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 1984 }(1359, a) \) \(1\)\(1\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{7}{12}\right)\)\(1\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{1}{12}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1984 }(1359,a) \;\) at \(\;a = \) e.g. 2