Properties

Label 1976.471
Modulus $1976$
Conductor $988$
Order $18$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1976, base_ring=CyclotomicField(18)) M = H._module chi = DirichletCharacter(H, M([9,0,6,11]))
 
Copy content pari:[g,chi] = znchar(Mod(471,1976))
 

Basic properties

Modulus: \(1976\)
Conductor: \(988\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(18\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{988}(471,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1976.fy

\(\chi_{1976}(471,\cdot)\) \(\chi_{1976}(887,\cdot)\) \(\chi_{1976}(1439,\cdot)\) \(\chi_{1976}(1511,\cdot)\) \(\chi_{1976}(1751,\cdot)\) \(\chi_{1976}(1959,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: 18.18.33471206396211100585697734387563143888896.1

Values on generators

\((495,989,457,1769)\) → \((-1,1,e\left(\frac{1}{3}\right),e\left(\frac{11}{18}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(15\)\(17\)\(21\)\(23\)\(25\)
\( \chi_{ 1976 }(471, a) \) \(1\)\(1\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{5}{9}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{5}{9}\right)\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{11}{18}\right)\)\(e\left(\frac{1}{18}\right)\)\(e\left(\frac{5}{9}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1976 }(471,a) \;\) at \(\;a = \) e.g. 2