Properties

Label 1976.995
Modulus $1976$
Conductor $1976$
Order $12$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1976, base_ring=CyclotomicField(12)) M = H._module chi = DirichletCharacter(H, M([6,6,11,4]))
 
Copy content pari:[g,chi] = znchar(Mod(995,1976))
 

Basic properties

Modulus: \(1976\)
Conductor: \(1976\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(12\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1976.ep

\(\chi_{1976}(11,\cdot)\) \(\chi_{1976}(539,\cdot)\) \(\chi_{1976}(995,\cdot)\) \(\chi_{1976}(1835,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: Number field defined by a degree 12 polynomial

Values on generators

\((495,989,457,1769)\) → \((-1,-1,e\left(\frac{11}{12}\right),e\left(\frac{1}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(15\)\(17\)\(21\)\(23\)\(25\)
\( \chi_{ 1976 }(995, a) \) \(1\)\(1\)\(1\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{7}{12}\right)\)\(1\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{6}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1976 }(995,a) \;\) at \(\;a = \) e.g. 2