Properties

Label 1976.1069
Modulus $1976$
Conductor $1976$
Order $18$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1976, base_ring=CyclotomicField(18)) M = H._module chi = DirichletCharacter(H, M([0,9,6,16]))
 
Copy content pari:[g,chi] = znchar(Mod(1069,1976))
 

Basic properties

Modulus: \(1976\)
Conductor: \(1976\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(18\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1976.gh

\(\chi_{1976}(61,\cdot)\) \(\chi_{1976}(549,\cdot)\) \(\chi_{1976}(757,\cdot)\) \(\chi_{1976}(997,\cdot)\) \(\chi_{1976}(1069,\cdot)\) \(\chi_{1976}(1621,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

\((495,989,457,1769)\) → \((1,-1,e\left(\frac{1}{3}\right),e\left(\frac{8}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(15\)\(17\)\(21\)\(23\)\(25\)
\( \chi_{ 1976 }(1069, a) \) \(1\)\(1\)\(e\left(\frac{7}{18}\right)\)\(e\left(\frac{13}{18}\right)\)\(1\)\(e\left(\frac{7}{9}\right)\)\(-1\)\(e\left(\frac{1}{9}\right)\)\(e\left(\frac{5}{9}\right)\)\(e\left(\frac{7}{18}\right)\)\(e\left(\frac{1}{9}\right)\)\(e\left(\frac{4}{9}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1976 }(1069,a) \;\) at \(\;a = \) e.g. 2