sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1976, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([0,18,15,34]))
pari:[g,chi] = znchar(Mod(1397,1976))
Modulus: | \(1976\) | |
Conductor: | \(1976\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(36\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1976}(357,\cdot)\)
\(\chi_{1976}(717,\cdot)\)
\(\chi_{1976}(773,\cdot)\)
\(\chi_{1976}(813,\cdot)\)
\(\chi_{1976}(869,\cdot)\)
\(\chi_{1976}(1029,\cdot)\)
\(\chi_{1976}(1181,\cdot)\)
\(\chi_{1976}(1229,\cdot)\)
\(\chi_{1976}(1237,\cdot)\)
\(\chi_{1976}(1389,\cdot)\)
\(\chi_{1976}(1397,\cdot)\)
\(\chi_{1976}(1853,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((495,989,457,1769)\) → \((1,-1,e\left(\frac{5}{12}\right),e\left(\frac{17}{18}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(15\) | \(17\) | \(21\) | \(23\) | \(25\) |
\( \chi_{ 1976 }(1397, a) \) |
\(1\) | \(1\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(i\) | \(e\left(\frac{8}{9}\right)\) | \(-i\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{13}{18}\right)\) |
sage:chi.jacobi_sum(n)