sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1960, base_ring=CyclotomicField(84))
M = H._module
chi = DirichletCharacter(H, M([0,42,63,58]))
pari:[g,chi] = znchar(Mod(1573,1960))
| Modulus: | \(1960\) | |
| Conductor: | \(1960\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(84\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1960}(157,\cdot)\)
\(\chi_{1960}(173,\cdot)\)
\(\chi_{1960}(213,\cdot)\)
\(\chi_{1960}(397,\cdot)\)
\(\chi_{1960}(437,\cdot)\)
\(\chi_{1960}(453,\cdot)\)
\(\chi_{1960}(493,\cdot)\)
\(\chi_{1960}(677,\cdot)\)
\(\chi_{1960}(733,\cdot)\)
\(\chi_{1960}(773,\cdot)\)
\(\chi_{1960}(957,\cdot)\)
\(\chi_{1960}(997,\cdot)\)
\(\chi_{1960}(1013,\cdot)\)
\(\chi_{1960}(1053,\cdot)\)
\(\chi_{1960}(1237,\cdot)\)
\(\chi_{1960}(1277,\cdot)\)
\(\chi_{1960}(1333,\cdot)\)
\(\chi_{1960}(1517,\cdot)\)
\(\chi_{1960}(1557,\cdot)\)
\(\chi_{1960}(1573,\cdot)\)
\(\chi_{1960}(1613,\cdot)\)
\(\chi_{1960}(1797,\cdot)\)
\(\chi_{1960}(1837,\cdot)\)
\(\chi_{1960}(1853,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1471,981,1177,1081)\) → \((1,-1,-i,e\left(\frac{29}{42}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(27\) | \(29\) | \(31\) |
| \( \chi_{ 1960 }(1573, a) \) |
\(1\) | \(1\) | \(e\left(\frac{37}{84}\right)\) | \(e\left(\frac{37}{42}\right)\) | \(e\left(\frac{5}{42}\right)\) | \(e\left(\frac{15}{28}\right)\) | \(e\left(\frac{1}{84}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{41}{84}\right)\) | \(e\left(\frac{9}{28}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{5}{6}\right)\) |
sage:chi.jacobi_sum(n)