sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1960, base_ring=CyclotomicField(14))
M = H._module
chi = DirichletCharacter(H, M([0,7,7,6]))
pari:[g,chi] = znchar(Mod(29,1960))
| Modulus: | \(1960\) | |
| Conductor: | \(1960\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(14\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1960}(29,\cdot)\)
\(\chi_{1960}(309,\cdot)\)
\(\chi_{1960}(869,\cdot)\)
\(\chi_{1960}(1149,\cdot)\)
\(\chi_{1960}(1429,\cdot)\)
\(\chi_{1960}(1709,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1471,981,1177,1081)\) → \((1,-1,-1,e\left(\frac{3}{7}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(27\) | \(29\) | \(31\) |
| \( \chi_{ 1960 }(29, a) \) |
\(1\) | \(1\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(-1\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(1\) |
sage:chi.jacobi_sum(n)