Properties

Label 1960.29
Modulus $1960$
Conductor $1960$
Order $14$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1960, base_ring=CyclotomicField(14)) M = H._module chi = DirichletCharacter(H, M([0,7,7,6]))
 
Copy content pari:[g,chi] = znchar(Mod(29,1960))
 

Basic properties

Modulus: \(1960\)
Conductor: \(1960\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(14\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1960.ca

\(\chi_{1960}(29,\cdot)\) \(\chi_{1960}(309,\cdot)\) \(\chi_{1960}(869,\cdot)\) \(\chi_{1960}(1149,\cdot)\) \(\chi_{1960}(1429,\cdot)\) \(\chi_{1960}(1709,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{7})\)
Fixed field: Number field defined by a degree 14 polynomial

Values on generators

\((1471,981,1177,1081)\) → \((1,-1,-1,e\left(\frac{3}{7}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(9\)\(11\)\(13\)\(17\)\(19\)\(23\)\(27\)\(29\)\(31\)
\( \chi_{ 1960 }(29, a) \) \(1\)\(1\)\(e\left(\frac{3}{7}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{9}{14}\right)\)\(e\left(\frac{1}{7}\right)\)\(e\left(\frac{3}{14}\right)\)\(-1\)\(e\left(\frac{11}{14}\right)\)\(e\left(\frac{2}{7}\right)\)\(e\left(\frac{3}{14}\right)\)\(1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1960 }(29,a) \;\) at \(\;a = \) e.g. 2