sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1960, base_ring=CyclotomicField(84))
M = H._module
chi = DirichletCharacter(H, M([42,42,21,8]))
pari:[g,chi] = znchar(Mod(1747,1960))
| Modulus: | \(1960\) | |
| Conductor: | \(1960\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(84\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1960}(107,\cdot)\)
\(\chi_{1960}(123,\cdot)\)
\(\chi_{1960}(163,\cdot)\)
\(\chi_{1960}(347,\cdot)\)
\(\chi_{1960}(387,\cdot)\)
\(\chi_{1960}(403,\cdot)\)
\(\chi_{1960}(443,\cdot)\)
\(\chi_{1960}(627,\cdot)\)
\(\chi_{1960}(683,\cdot)\)
\(\chi_{1960}(723,\cdot)\)
\(\chi_{1960}(907,\cdot)\)
\(\chi_{1960}(947,\cdot)\)
\(\chi_{1960}(963,\cdot)\)
\(\chi_{1960}(1003,\cdot)\)
\(\chi_{1960}(1187,\cdot)\)
\(\chi_{1960}(1227,\cdot)\)
\(\chi_{1960}(1283,\cdot)\)
\(\chi_{1960}(1467,\cdot)\)
\(\chi_{1960}(1507,\cdot)\)
\(\chi_{1960}(1523,\cdot)\)
\(\chi_{1960}(1563,\cdot)\)
\(\chi_{1960}(1747,\cdot)\)
\(\chi_{1960}(1787,\cdot)\)
\(\chi_{1960}(1803,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1471,981,1177,1081)\) → \((-1,-1,i,e\left(\frac{2}{21}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(27\) | \(29\) | \(31\) |
| \( \chi_{ 1960 }(1747, a) \) |
\(1\) | \(1\) | \(e\left(\frac{71}{84}\right)\) | \(e\left(\frac{29}{42}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{11}{28}\right)\) | \(e\left(\frac{53}{84}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{73}{84}\right)\) | \(e\left(\frac{15}{28}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{1}{6}\right)\) |
sage:chi.jacobi_sum(n)