Properties

Label 1953.1301
Modulus $1953$
Conductor $1953$
Order $6$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1953, base_ring=CyclotomicField(6)) M = H._module chi = DirichletCharacter(H, M([5,3,3]))
 
Copy content pari:[g,chi] = znchar(Mod(1301,1953))
 

Basic properties

Modulus: \(1953\)
Conductor: \(1953\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(6\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1953.cu

\(\chi_{1953}(650,\cdot)\) \(\chi_{1953}(1301,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\mathbb{Q}(\zeta_3)\)
Fixed field: 6.0.201127054779.4

Values on generators

\((218,1396,127)\) → \((e\left(\frac{5}{6}\right),-1,-1)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(13\)\(16\)\(17\)\(19\)
\( \chi_{ 1953 }(1301, a) \) \(-1\)\(1\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{2}{3}\right)\)\(-1\)\(-1\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{3}\right)\)\(-1\)\(-1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1953 }(1301,a) \;\) at \(\;a = \) e.g. 2