Properties

Label 1925.874
Modulus $1925$
Conductor $385$
Order $10$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1925, base_ring=CyclotomicField(10)) M = H._module chi = DirichletCharacter(H, M([5,5,4]))
 
Copy content pari:[g,chi] = znchar(Mod(874,1925))
 

Basic properties

Modulus: \(1925\)
Conductor: \(385\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(10\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{385}(104,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1925.cb

\(\chi_{1925}(174,\cdot)\) \(\chi_{1925}(874,\cdot)\) \(\chi_{1925}(1049,\cdot)\) \(\chi_{1925}(1224,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{5})\)
Fixed field: 10.0.11258530353021875.4

Values on generators

\((1002,276,1751)\) → \((-1,-1,e\left(\frac{2}{5}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(8\)\(9\)\(12\)\(13\)\(16\)\(17\)
\( \chi_{ 1925 }(874, a) \) \(-1\)\(1\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{2}{5}\right)\)\(1\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{3}{5}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1925 }(874,a) \;\) at \(\;a = \) e.g. 2