sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1900, base_ring=CyclotomicField(180))
M = H._module
chi = DirichletCharacter(H, M([90,117,100]))
pari:[g,chi] = znchar(Mod(967,1900))
Modulus: | \(1900\) | |
Conductor: | \(1900\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(180\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1900}(23,\cdot)\)
\(\chi_{1900}(47,\cdot)\)
\(\chi_{1900}(63,\cdot)\)
\(\chi_{1900}(123,\cdot)\)
\(\chi_{1900}(187,\cdot)\)
\(\chi_{1900}(263,\cdot)\)
\(\chi_{1900}(283,\cdot)\)
\(\chi_{1900}(327,\cdot)\)
\(\chi_{1900}(347,\cdot)\)
\(\chi_{1900}(367,\cdot)\)
\(\chi_{1900}(403,\cdot)\)
\(\chi_{1900}(423,\cdot)\)
\(\chi_{1900}(427,\cdot)\)
\(\chi_{1900}(503,\cdot)\)
\(\chi_{1900}(567,\cdot)\)
\(\chi_{1900}(587,\cdot)\)
\(\chi_{1900}(663,\cdot)\)
\(\chi_{1900}(727,\cdot)\)
\(\chi_{1900}(747,\cdot)\)
\(\chi_{1900}(783,\cdot)\)
\(\chi_{1900}(803,\cdot)\)
\(\chi_{1900}(823,\cdot)\)
\(\chi_{1900}(883,\cdot)\)
\(\chi_{1900}(947,\cdot)\)
\(\chi_{1900}(967,\cdot)\)
\(\chi_{1900}(1023,\cdot)\)
\(\chi_{1900}(1087,\cdot)\)
\(\chi_{1900}(1127,\cdot)\)
\(\chi_{1900}(1163,\cdot)\)
\(\chi_{1900}(1183,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((951,77,401)\) → \((-1,e\left(\frac{13}{20}\right),e\left(\frac{5}{9}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(21\) | \(23\) | \(27\) | \(29\) |
\( \chi_{ 1900 }(967, a) \) |
\(1\) | \(1\) | \(e\left(\frac{49}{180}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{49}{90}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{23}{180}\right)\) | \(e\left(\frac{1}{180}\right)\) | \(e\left(\frac{16}{45}\right)\) | \(e\left(\frac{137}{180}\right)\) | \(e\left(\frac{49}{60}\right)\) | \(e\left(\frac{67}{90}\right)\) |
sage:chi.jacobi_sum(n)