sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1900, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([0,18,20]))
pari:[g,chi] = znchar(Mod(1721,1900))
\(\chi_{1900}(121,\cdot)\)
\(\chi_{1900}(581,\cdot)\)
\(\chi_{1900}(881,\cdot)\)
\(\chi_{1900}(961,\cdot)\)
\(\chi_{1900}(1261,\cdot)\)
\(\chi_{1900}(1341,\cdot)\)
\(\chi_{1900}(1641,\cdot)\)
\(\chi_{1900}(1721,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((951,77,401)\) → \((1,e\left(\frac{3}{5}\right),e\left(\frac{2}{3}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(21\) | \(23\) | \(27\) | \(29\) |
| \( \chi_{ 1900 }(1721, a) \) |
\(1\) | \(1\) | \(e\left(\frac{13}{15}\right)\) | \(1\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{8}{15}\right)\) |
sage:chi.jacobi_sum(n)