Properties

Label 1900.1721
Modulus $1900$
Conductor $475$
Order $15$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1900, base_ring=CyclotomicField(30)) M = H._module chi = DirichletCharacter(H, M([0,18,20]))
 
Copy content pari:[g,chi] = znchar(Mod(1721,1900))
 

Basic properties

Modulus: \(1900\)
Conductor: \(475\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(15\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{475}(296,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1900.bh

\(\chi_{1900}(121,\cdot)\) \(\chi_{1900}(581,\cdot)\) \(\chi_{1900}(881,\cdot)\) \(\chi_{1900}(961,\cdot)\) \(\chi_{1900}(1261,\cdot)\) \(\chi_{1900}(1341,\cdot)\) \(\chi_{1900}(1641,\cdot)\) \(\chi_{1900}(1721,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: Number field defined by a degree 15 polynomial

Values on generators

\((951,77,401)\) → \((1,e\left(\frac{3}{5}\right),e\left(\frac{2}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 1900 }(1721, a) \) \(1\)\(1\)\(e\left(\frac{13}{15}\right)\)\(1\)\(e\left(\frac{11}{15}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{11}{15}\right)\)\(e\left(\frac{7}{15}\right)\)\(e\left(\frac{13}{15}\right)\)\(e\left(\frac{14}{15}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{8}{15}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1900 }(1721,a) \;\) at \(\;a = \) e.g. 2