sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1900, base_ring=CyclotomicField(18))
M = H._module
chi = DirichletCharacter(H, M([9,0,1]))
pari:[g,chi] = znchar(Mod(1351,1900))
\(\chi_{1900}(51,\cdot)\)
\(\chi_{1900}(451,\cdot)\)
\(\chi_{1900}(751,\cdot)\)
\(\chi_{1900}(851,\cdot)\)
\(\chi_{1900}(1351,\cdot)\)
\(\chi_{1900}(1751,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((951,77,401)\) → \((-1,1,e\left(\frac{1}{18}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(21\) | \(23\) | \(27\) | \(29\) |
| \( \chi_{ 1900 }(1351, a) \) |
\(1\) | \(1\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{17}{18}\right)\) |
sage:chi.jacobi_sum(n)