Properties

Label 1900.1351
Modulus $1900$
Conductor $76$
Order $18$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1900, base_ring=CyclotomicField(18)) M = H._module chi = DirichletCharacter(H, M([9,0,1]))
 
Copy content pari:[g,chi] = znchar(Mod(1351,1900))
 

Basic properties

Modulus: \(1900\)
Conductor: \(76\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(18\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{76}(59,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1900.bn

\(\chi_{1900}(51,\cdot)\) \(\chi_{1900}(451,\cdot)\) \(\chi_{1900}(751,\cdot)\) \(\chi_{1900}(851,\cdot)\) \(\chi_{1900}(1351,\cdot)\) \(\chi_{1900}(1751,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: \(\Q(\zeta_{76})^+\)

Values on generators

\((951,77,401)\) → \((-1,1,e\left(\frac{1}{18}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 1900 }(1351, a) \) \(1\)\(1\)\(e\left(\frac{2}{9}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{4}{9}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{5}{18}\right)\)\(e\left(\frac{5}{9}\right)\)\(e\left(\frac{1}{18}\right)\)\(e\left(\frac{11}{18}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{17}{18}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1900 }(1351,a) \;\) at \(\;a = \) e.g. 2