Properties

Label 1870.1643
Modulus $1870$
Conductor $935$
Order $80$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1870, base_ring=CyclotomicField(80)) M = H._module chi = DirichletCharacter(H, M([60,16,35]))
 
Copy content pari:[g,chi] = znchar(Mod(1643,1870))
 

Basic properties

Modulus: \(1870\)
Conductor: \(935\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(80\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{935}(708,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1870.cn

\(\chi_{1870}(37,\cdot)\) \(\chi_{1870}(97,\cdot)\) \(\chi_{1870}(113,\cdot)\) \(\chi_{1870}(163,\cdot)\) \(\chi_{1870}(207,\cdot)\) \(\chi_{1870}(267,\cdot)\) \(\chi_{1870}(313,\cdot)\) \(\chi_{1870}(333,\cdot)\) \(\chi_{1870}(377,\cdot)\) \(\chi_{1870}(533,\cdot)\) \(\chi_{1870}(653,\cdot)\) \(\chi_{1870}(823,\cdot)\) \(\chi_{1870}(873,\cdot)\) \(\chi_{1870}(993,\cdot)\) \(\chi_{1870}(1017,\cdot)\) \(\chi_{1870}(1043,\cdot)\) \(\chi_{1870}(1127,\cdot)\) \(\chi_{1870}(1213,\cdot)\) \(\chi_{1870}(1303,\cdot)\) \(\chi_{1870}(1357,\cdot)\) \(\chi_{1870}(1457,\cdot)\) \(\chi_{1870}(1467,\cdot)\) \(\chi_{1870}(1523,\cdot)\) \(\chi_{1870}(1527,\cdot)\) \(\chi_{1870}(1567,\cdot)\) \(\chi_{1870}(1637,\cdot)\) \(\chi_{1870}(1643,\cdot)\) \(\chi_{1870}(1697,\cdot)\) \(\chi_{1870}(1797,\cdot)\) \(\chi_{1870}(1807,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{80})$
Fixed field: Number field defined by a degree 80 polynomial

Values on generators

\((1497,1531,1431)\) → \((-i,e\left(\frac{1}{5}\right),e\left(\frac{7}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(13\)\(19\)\(21\)\(23\)\(27\)\(29\)\(31\)
\( \chi_{ 1870 }(1643, a) \) \(1\)\(1\)\(e\left(\frac{23}{80}\right)\)\(e\left(\frac{77}{80}\right)\)\(e\left(\frac{23}{40}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{9}{40}\right)\)\(i\)\(e\left(\frac{13}{16}\right)\)\(e\left(\frac{69}{80}\right)\)\(e\left(\frac{47}{80}\right)\)\(e\left(\frac{11}{80}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1870 }(1643,a) \;\) at \(\;a = \) e.g. 2