Properties

Label 1870.1349
Modulus $1870$
Conductor $935$
Order $80$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1870, base_ring=CyclotomicField(80)) M = H._module chi = DirichletCharacter(H, M([40,56,75]))
 
Copy content pari:[g,chi] = znchar(Mod(1349,1870))
 

Basic properties

Modulus: \(1870\)
Conductor: \(935\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(80\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{935}(414,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1870.cq

\(\chi_{1870}(29,\cdot)\) \(\chi_{1870}(39,\cdot)\) \(\chi_{1870}(79,\cdot)\) \(\chi_{1870}(129,\cdot)\) \(\chi_{1870}(139,\cdot)\) \(\chi_{1870}(249,\cdot)\) \(\chi_{1870}(299,\cdot)\) \(\chi_{1870}(369,\cdot)\) \(\chi_{1870}(469,\cdot)\) \(\chi_{1870}(479,\cdot)\) \(\chi_{1870}(589,\cdot)\) \(\chi_{1870}(789,\cdot)\) \(\chi_{1870}(809,\cdot)\) \(\chi_{1870}(959,\cdot)\) \(\chi_{1870}(1009,\cdot)\) \(\chi_{1870}(1119,\cdot)\) \(\chi_{1870}(1129,\cdot)\) \(\chi_{1870}(1179,\cdot)\) \(\chi_{1870}(1229,\cdot)\) \(\chi_{1870}(1289,\cdot)\) \(\chi_{1870}(1349,\cdot)\) \(\chi_{1870}(1399,\cdot)\) \(\chi_{1870}(1459,\cdot)\) \(\chi_{1870}(1469,\cdot)\) \(\chi_{1870}(1559,\cdot)\) \(\chi_{1870}(1569,\cdot)\) \(\chi_{1870}(1669,\cdot)\) \(\chi_{1870}(1689,\cdot)\) \(\chi_{1870}(1729,\cdot)\) \(\chi_{1870}(1779,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{80})$
Fixed field: Number field defined by a degree 80 polynomial

Values on generators

\((1497,1531,1431)\) → \((-1,e\left(\frac{7}{10}\right),e\left(\frac{15}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(13\)\(19\)\(21\)\(23\)\(27\)\(29\)\(31\)
\( \chi_{ 1870 }(1349, a) \) \(1\)\(1\)\(e\left(\frac{3}{80}\right)\)\(e\left(\frac{57}{80}\right)\)\(e\left(\frac{3}{40}\right)\)\(e\left(\frac{19}{20}\right)\)\(e\left(\frac{9}{40}\right)\)\(-i\)\(e\left(\frac{9}{16}\right)\)\(e\left(\frac{9}{80}\right)\)\(e\left(\frac{7}{80}\right)\)\(e\left(\frac{51}{80}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1870 }(1349,a) \;\) at \(\;a = \) e.g. 2