sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(185, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([9,17]))
pari:[g,chi] = znchar(Mod(92,185))
| Modulus: | \(185\) | |
| Conductor: | \(185\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(36\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{185}(2,\cdot)\)
\(\chi_{185}(13,\cdot)\)
\(\chi_{185}(32,\cdot)\)
\(\chi_{185}(52,\cdot)\)
\(\chi_{185}(57,\cdot)\)
\(\chi_{185}(92,\cdot)\)
\(\chi_{185}(93,\cdot)\)
\(\chi_{185}(128,\cdot)\)
\(\chi_{185}(133,\cdot)\)
\(\chi_{185}(153,\cdot)\)
\(\chi_{185}(172,\cdot)\)
\(\chi_{185}(183,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((112,76)\) → \((i,e\left(\frac{17}{36}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) |
| \( \chi_{ 185 }(92, a) \) |
\(1\) | \(1\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(-i\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{17}{18}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)