Properties

Label 1848.1061
Modulus $1848$
Conductor $1848$
Order $30$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1848, base_ring=CyclotomicField(30)) M = H._module chi = DirichletCharacter(H, M([0,15,15,20,12]))
 
Copy content pari:[g,chi] = znchar(Mod(1061,1848))
 

Basic properties

Modulus: \(1848\)
Conductor: \(1848\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(30\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1848.er

\(\chi_{1848}(53,\cdot)\) \(\chi_{1848}(317,\cdot)\) \(\chi_{1848}(389,\cdot)\) \(\chi_{1848}(653,\cdot)\) \(\chi_{1848}(1061,\cdot)\) \(\chi_{1848}(1325,\cdot)\) \(\chi_{1848}(1565,\cdot)\) \(\chi_{1848}(1829,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: Number field defined by a degree 30 polynomial

Values on generators

\((463,925,617,1585,673)\) → \((1,-1,-1,e\left(\frac{2}{3}\right),e\left(\frac{2}{5}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 1848 }(1061, a) \) \(-1\)\(1\)\(e\left(\frac{14}{15}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{23}{30}\right)\)\(e\left(\frac{1}{30}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{13}{15}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{1}{15}\right)\)\(e\left(\frac{19}{30}\right)\)\(e\left(\frac{7}{10}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1848 }(1061,a) \;\) at \(\;a = \) e.g. 2