Properties

Label 1824.203
Modulus $1824$
Conductor $1824$
Order $72$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1824, base_ring=CyclotomicField(72)) M = H._module chi = DirichletCharacter(H, M([36,45,36,20]))
 
Copy content pari:[g,chi] = znchar(Mod(203,1824))
 

Basic properties

Modulus: \(1824\)
Conductor: \(1824\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(72\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1824.dk

\(\chi_{1824}(59,\cdot)\) \(\chi_{1824}(155,\cdot)\) \(\chi_{1824}(203,\cdot)\) \(\chi_{1824}(299,\cdot)\) \(\chi_{1824}(371,\cdot)\) \(\chi_{1824}(395,\cdot)\) \(\chi_{1824}(515,\cdot)\) \(\chi_{1824}(611,\cdot)\) \(\chi_{1824}(659,\cdot)\) \(\chi_{1824}(755,\cdot)\) \(\chi_{1824}(827,\cdot)\) \(\chi_{1824}(851,\cdot)\) \(\chi_{1824}(971,\cdot)\) \(\chi_{1824}(1067,\cdot)\) \(\chi_{1824}(1115,\cdot)\) \(\chi_{1824}(1211,\cdot)\) \(\chi_{1824}(1283,\cdot)\) \(\chi_{1824}(1307,\cdot)\) \(\chi_{1824}(1427,\cdot)\) \(\chi_{1824}(1523,\cdot)\) \(\chi_{1824}(1571,\cdot)\) \(\chi_{1824}(1667,\cdot)\) \(\chi_{1824}(1739,\cdot)\) \(\chi_{1824}(1763,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{72})$
Fixed field: Number field defined by a degree 72 polynomial

Values on generators

\((799,229,1217,97)\) → \((-1,e\left(\frac{5}{8}\right),-1,e\left(\frac{5}{18}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 1824 }(203, a) \) \(-1\)\(1\)\(e\left(\frac{41}{72}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{11}{24}\right)\)\(e\left(\frac{55}{72}\right)\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{11}{36}\right)\)\(e\left(\frac{5}{36}\right)\)\(e\left(\frac{7}{72}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{71}{72}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1824 }(203,a) \;\) at \(\;a = \) e.g. 2