sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1824, base_ring=CyclotomicField(72))
M = H._module
chi = DirichletCharacter(H, M([36,45,36,20]))
pari:[g,chi] = znchar(Mod(203,1824))
Modulus: | \(1824\) | |
Conductor: | \(1824\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(72\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1824}(59,\cdot)\)
\(\chi_{1824}(155,\cdot)\)
\(\chi_{1824}(203,\cdot)\)
\(\chi_{1824}(299,\cdot)\)
\(\chi_{1824}(371,\cdot)\)
\(\chi_{1824}(395,\cdot)\)
\(\chi_{1824}(515,\cdot)\)
\(\chi_{1824}(611,\cdot)\)
\(\chi_{1824}(659,\cdot)\)
\(\chi_{1824}(755,\cdot)\)
\(\chi_{1824}(827,\cdot)\)
\(\chi_{1824}(851,\cdot)\)
\(\chi_{1824}(971,\cdot)\)
\(\chi_{1824}(1067,\cdot)\)
\(\chi_{1824}(1115,\cdot)\)
\(\chi_{1824}(1211,\cdot)\)
\(\chi_{1824}(1283,\cdot)\)
\(\chi_{1824}(1307,\cdot)\)
\(\chi_{1824}(1427,\cdot)\)
\(\chi_{1824}(1523,\cdot)\)
\(\chi_{1824}(1571,\cdot)\)
\(\chi_{1824}(1667,\cdot)\)
\(\chi_{1824}(1739,\cdot)\)
\(\chi_{1824}(1763,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((799,229,1217,97)\) → \((-1,e\left(\frac{5}{8}\right),-1,e\left(\frac{5}{18}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
\( \chi_{ 1824 }(203, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{41}{72}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{55}{72}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{7}{72}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{71}{72}\right)\) |
sage:chi.jacobi_sum(n)