Properties

Label 1824.1291
Modulus $1824$
Conductor $608$
Order $8$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1824, base_ring=CyclotomicField(8)) M = H._module chi = DirichletCharacter(H, M([4,5,0,4]))
 
Copy content pari:[g,chi] = znchar(Mod(1291,1824))
 

Basic properties

Modulus: \(1824\)
Conductor: \(608\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(8\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{608}(75,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1824.br

\(\chi_{1824}(379,\cdot)\) \(\chi_{1824}(835,\cdot)\) \(\chi_{1824}(1291,\cdot)\) \(\chi_{1824}(1747,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{8})\)
Fixed field: 8.8.279862216491008.1

Values on generators

\((799,229,1217,97)\) → \((-1,e\left(\frac{5}{8}\right),1,-1)\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 1824 }(1291, a) \) \(1\)\(1\)\(e\left(\frac{5}{8}\right)\)\(-i\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{7}{8}\right)\)\(-1\)\(i\)\(i\)\(e\left(\frac{3}{8}\right)\)\(1\)\(e\left(\frac{3}{8}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1824 }(1291,a) \;\) at \(\;a = \) e.g. 2