Properties

Label 18225.ci
Modulus $18225$
Conductor $6075$
Order $810$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(18225, base_ring=CyclotomicField(810)) M = H._module chi = DirichletCharacter(H, M([475,729])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(44,18225)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(18225\)
Conductor: \(6075\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(810\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 6075.ce
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{405})$
Fixed field: Number field defined by a degree 810 polynomial (not computed)

First 19 of 216 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(7\) \(8\) \(11\) \(13\) \(14\) \(16\) \(17\) \(19\)
\(\chi_{18225}(44,\cdot)\) \(-1\) \(1\) \(e\left(\frac{197}{405}\right)\) \(e\left(\frac{394}{405}\right)\) \(e\left(\frac{89}{162}\right)\) \(e\left(\frac{62}{135}\right)\) \(e\left(\frac{289}{810}\right)\) \(e\left(\frac{641}{810}\right)\) \(e\left(\frac{29}{810}\right)\) \(e\left(\frac{383}{405}\right)\) \(e\left(\frac{7}{135}\right)\) \(e\left(\frac{92}{135}\right)\)
\(\chi_{18225}(89,\cdot)\) \(-1\) \(1\) \(e\left(\frac{349}{405}\right)\) \(e\left(\frac{293}{405}\right)\) \(e\left(\frac{133}{162}\right)\) \(e\left(\frac{79}{135}\right)\) \(e\left(\frac{623}{810}\right)\) \(e\left(\frac{157}{810}\right)\) \(e\left(\frac{553}{810}\right)\) \(e\left(\frac{181}{405}\right)\) \(e\left(\frac{59}{135}\right)\) \(e\left(\frac{4}{135}\right)\)
\(\chi_{18225}(179,\cdot)\) \(-1\) \(1\) \(e\left(\frac{113}{405}\right)\) \(e\left(\frac{226}{405}\right)\) \(e\left(\frac{5}{162}\right)\) \(e\left(\frac{113}{135}\right)\) \(e\left(\frac{211}{810}\right)\) \(e\left(\frac{269}{810}\right)\) \(e\left(\frac{251}{810}\right)\) \(e\left(\frac{47}{405}\right)\) \(e\left(\frac{28}{135}\right)\) \(e\left(\frac{98}{135}\right)\)
\(\chi_{18225}(314,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{405}\right)\) \(e\left(\frac{58}{405}\right)\) \(e\left(\frac{83}{162}\right)\) \(e\left(\frac{29}{135}\right)\) \(e\left(\frac{133}{810}\right)\) \(e\left(\frac{707}{810}\right)\) \(e\left(\frac{473}{810}\right)\) \(e\left(\frac{116}{405}\right)\) \(e\left(\frac{49}{135}\right)\) \(e\left(\frac{104}{135}\right)\)
\(\chi_{18225}(359,\cdot)\) \(-1\) \(1\) \(e\left(\frac{316}{405}\right)\) \(e\left(\frac{227}{405}\right)\) \(e\left(\frac{19}{162}\right)\) \(e\left(\frac{46}{135}\right)\) \(e\left(\frac{737}{810}\right)\) \(e\left(\frac{763}{810}\right)\) \(e\left(\frac{727}{810}\right)\) \(e\left(\frac{49}{405}\right)\) \(e\left(\frac{101}{135}\right)\) \(e\left(\frac{16}{135}\right)\)
\(\chi_{18225}(494,\cdot)\) \(-1\) \(1\) \(e\left(\frac{97}{405}\right)\) \(e\left(\frac{194}{405}\right)\) \(e\left(\frac{43}{162}\right)\) \(e\left(\frac{97}{135}\right)\) \(e\left(\frac{389}{810}\right)\) \(e\left(\frac{661}{810}\right)\) \(e\left(\frac{409}{810}\right)\) \(e\left(\frac{388}{405}\right)\) \(e\left(\frac{122}{135}\right)\) \(e\left(\frac{22}{135}\right)\)
\(\chi_{18225}(584,\cdot)\) \(-1\) \(1\) \(e\left(\frac{266}{405}\right)\) \(e\left(\frac{127}{405}\right)\) \(e\left(\frac{77}{162}\right)\) \(e\left(\frac{131}{135}\right)\) \(e\left(\frac{787}{810}\right)\) \(e\left(\frac{773}{810}\right)\) \(e\left(\frac{107}{810}\right)\) \(e\left(\frac{254}{405}\right)\) \(e\left(\frac{91}{135}\right)\) \(e\left(\frac{116}{135}\right)\)
\(\chi_{18225}(629,\cdot)\) \(-1\) \(1\) \(e\left(\frac{283}{405}\right)\) \(e\left(\frac{161}{405}\right)\) \(e\left(\frac{67}{162}\right)\) \(e\left(\frac{13}{135}\right)\) \(e\left(\frac{41}{810}\right)\) \(e\left(\frac{559}{810}\right)\) \(e\left(\frac{91}{810}\right)\) \(e\left(\frac{322}{405}\right)\) \(e\left(\frac{8}{135}\right)\) \(e\left(\frac{28}{135}\right)\)
\(\chi_{18225}(719,\cdot)\) \(-1\) \(1\) \(e\left(\frac{182}{405}\right)\) \(e\left(\frac{364}{405}\right)\) \(e\left(\frac{155}{162}\right)\) \(e\left(\frac{47}{135}\right)\) \(e\left(\frac{709}{810}\right)\) \(e\left(\frac{401}{810}\right)\) \(e\left(\frac{329}{810}\right)\) \(e\left(\frac{323}{405}\right)\) \(e\left(\frac{112}{135}\right)\) \(e\left(\frac{122}{135}\right)\)
\(\chi_{18225}(764,\cdot)\) \(-1\) \(1\) \(e\left(\frac{64}{405}\right)\) \(e\left(\frac{128}{405}\right)\) \(e\left(\frac{91}{162}\right)\) \(e\left(\frac{64}{135}\right)\) \(e\left(\frac{503}{810}\right)\) \(e\left(\frac{457}{810}\right)\) \(e\left(\frac{583}{810}\right)\) \(e\left(\frac{256}{405}\right)\) \(e\left(\frac{29}{135}\right)\) \(e\left(\frac{34}{135}\right)\)
\(\chi_{18225}(854,\cdot)\) \(-1\) \(1\) \(e\left(\frac{98}{405}\right)\) \(e\left(\frac{196}{405}\right)\) \(e\left(\frac{71}{162}\right)\) \(e\left(\frac{98}{135}\right)\) \(e\left(\frac{631}{810}\right)\) \(e\left(\frac{29}{810}\right)\) \(e\left(\frac{551}{810}\right)\) \(e\left(\frac{392}{405}\right)\) \(e\left(\frac{133}{135}\right)\) \(e\left(\frac{128}{135}\right)\)
\(\chi_{18225}(989,\cdot)\) \(-1\) \(1\) \(e\left(\frac{14}{405}\right)\) \(e\left(\frac{28}{405}\right)\) \(e\left(\frac{149}{162}\right)\) \(e\left(\frac{14}{135}\right)\) \(e\left(\frac{553}{810}\right)\) \(e\left(\frac{467}{810}\right)\) \(e\left(\frac{773}{810}\right)\) \(e\left(\frac{56}{405}\right)\) \(e\left(\frac{19}{135}\right)\) \(e\left(\frac{134}{135}\right)\)
\(\chi_{18225}(1034,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{405}\right)\) \(e\left(\frac{62}{405}\right)\) \(e\left(\frac{139}{162}\right)\) \(e\left(\frac{31}{135}\right)\) \(e\left(\frac{617}{810}\right)\) \(e\left(\frac{253}{810}\right)\) \(e\left(\frac{757}{810}\right)\) \(e\left(\frac{124}{405}\right)\) \(e\left(\frac{71}{135}\right)\) \(e\left(\frac{46}{135}\right)\)
\(\chi_{18225}(1169,\cdot)\) \(-1\) \(1\) \(e\left(\frac{217}{405}\right)\) \(e\left(\frac{29}{405}\right)\) \(e\left(\frac{1}{162}\right)\) \(e\left(\frac{82}{135}\right)\) \(e\left(\frac{269}{810}\right)\) \(e\left(\frac{151}{810}\right)\) \(e\left(\frac{439}{810}\right)\) \(e\left(\frac{58}{405}\right)\) \(e\left(\frac{92}{135}\right)\) \(e\left(\frac{52}{135}\right)\)
\(\chi_{18225}(1259,\cdot)\) \(-1\) \(1\) \(e\left(\frac{251}{405}\right)\) \(e\left(\frac{97}{405}\right)\) \(e\left(\frac{143}{162}\right)\) \(e\left(\frac{116}{135}\right)\) \(e\left(\frac{397}{810}\right)\) \(e\left(\frac{533}{810}\right)\) \(e\left(\frac{407}{810}\right)\) \(e\left(\frac{194}{405}\right)\) \(e\left(\frac{61}{135}\right)\) \(e\left(\frac{11}{135}\right)\)
\(\chi_{18225}(1304,\cdot)\) \(-1\) \(1\) \(e\left(\frac{403}{405}\right)\) \(e\left(\frac{401}{405}\right)\) \(e\left(\frac{25}{162}\right)\) \(e\left(\frac{133}{135}\right)\) \(e\left(\frac{731}{810}\right)\) \(e\left(\frac{49}{810}\right)\) \(e\left(\frac{121}{810}\right)\) \(e\left(\frac{397}{405}\right)\) \(e\left(\frac{113}{135}\right)\) \(e\left(\frac{58}{135}\right)\)
\(\chi_{18225}(1394,\cdot)\) \(-1\) \(1\) \(e\left(\frac{167}{405}\right)\) \(e\left(\frac{334}{405}\right)\) \(e\left(\frac{59}{162}\right)\) \(e\left(\frac{32}{135}\right)\) \(e\left(\frac{319}{810}\right)\) \(e\left(\frac{161}{810}\right)\) \(e\left(\frac{629}{810}\right)\) \(e\left(\frac{263}{405}\right)\) \(e\left(\frac{82}{135}\right)\) \(e\left(\frac{17}{135}\right)\)
\(\chi_{18225}(1439,\cdot)\) \(-1\) \(1\) \(e\left(\frac{184}{405}\right)\) \(e\left(\frac{368}{405}\right)\) \(e\left(\frac{49}{162}\right)\) \(e\left(\frac{49}{135}\right)\) \(e\left(\frac{383}{810}\right)\) \(e\left(\frac{757}{810}\right)\) \(e\left(\frac{613}{810}\right)\) \(e\left(\frac{331}{405}\right)\) \(e\left(\frac{134}{135}\right)\) \(e\left(\frac{64}{135}\right)\)
\(\chi_{18225}(1529,\cdot)\) \(-1\) \(1\) \(e\left(\frac{83}{405}\right)\) \(e\left(\frac{166}{405}\right)\) \(e\left(\frac{137}{162}\right)\) \(e\left(\frac{83}{135}\right)\) \(e\left(\frac{241}{810}\right)\) \(e\left(\frac{599}{810}\right)\) \(e\left(\frac{41}{810}\right)\) \(e\left(\frac{332}{405}\right)\) \(e\left(\frac{103}{135}\right)\) \(e\left(\frac{23}{135}\right)\)