Properties

Label 18225.8
Modulus $18225$
Conductor $6075$
Order $1620$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(18225, base_ring=CyclotomicField(1620)) M = H._module chi = DirichletCharacter(H, M([10,243]))
 
Copy content pari:[g,chi] = znchar(Mod(8,18225))
 

Basic properties

Modulus: \(18225\)
Conductor: \(6075\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(1620\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{6075}(4133,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 18225.cn

\(\chi_{18225}(8,\cdot)\) \(\chi_{18225}(17,\cdot)\) \(\chi_{18225}(62,\cdot)\) \(\chi_{18225}(98,\cdot)\) \(\chi_{18225}(152,\cdot)\) \(\chi_{18225}(197,\cdot)\) \(\chi_{18225}(233,\cdot)\) \(\chi_{18225}(278,\cdot)\) \(\chi_{18225}(287,\cdot)\) \(\chi_{18225}(413,\cdot)\) \(\chi_{18225}(422,\cdot)\) \(\chi_{18225}(467,\cdot)\) \(\chi_{18225}(503,\cdot)\) \(\chi_{18225}(548,\cdot)\) \(\chi_{18225}(602,\cdot)\) \(\chi_{18225}(638,\cdot)\) \(\chi_{18225}(683,\cdot)\) \(\chi_{18225}(692,\cdot)\) \(\chi_{18225}(737,\cdot)\) \(\chi_{18225}(773,\cdot)\) \(\chi_{18225}(827,\cdot)\) \(\chi_{18225}(872,\cdot)\) \(\chi_{18225}(908,\cdot)\) \(\chi_{18225}(953,\cdot)\) \(\chi_{18225}(962,\cdot)\) \(\chi_{18225}(1088,\cdot)\) \(\chi_{18225}(1097,\cdot)\) \(\chi_{18225}(1142,\cdot)\) \(\chi_{18225}(1178,\cdot)\) \(\chi_{18225}(1223,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{1620})$
Fixed field: Number field defined by a degree 1620 polynomial (not computed)

Values on generators

\((4376,13852)\) → \((e\left(\frac{1}{162}\right),e\left(\frac{3}{20}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(19\)
\( \chi_{ 18225 }(8, a) \) \(1\)\(1\)\(e\left(\frac{253}{1620}\right)\)\(e\left(\frac{253}{810}\right)\)\(e\left(\frac{59}{324}\right)\)\(e\left(\frac{253}{540}\right)\)\(e\left(\frac{119}{810}\right)\)\(e\left(\frac{1457}{1620}\right)\)\(e\left(\frac{137}{405}\right)\)\(e\left(\frac{253}{405}\right)\)\(e\left(\frac{83}{540}\right)\)\(e\left(\frac{179}{270}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 18225 }(8,a) \;\) at \(\;a = \) e.g. 2