Properties

Label 18225.686
Modulus $18225$
Conductor $18225$
Order $2430$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(18225, base_ring=CyclotomicField(2430)) M = H._module chi = DirichletCharacter(H, M([1055,1944]))
 
Copy content pari:[g,chi] = znchar(Mod(686,18225))
 

Basic properties

Modulus: \(18225\)
Conductor: \(18225\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(2430\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 18225.cq

\(\chi_{18225}(11,\cdot)\) \(\chi_{18225}(41,\cdot)\) \(\chi_{18225}(56,\cdot)\) \(\chi_{18225}(86,\cdot)\) \(\chi_{18225}(131,\cdot)\) \(\chi_{18225}(146,\cdot)\) \(\chi_{18225}(191,\cdot)\) \(\chi_{18225}(221,\cdot)\) \(\chi_{18225}(236,\cdot)\) \(\chi_{18225}(266,\cdot)\) \(\chi_{18225}(281,\cdot)\) \(\chi_{18225}(311,\cdot)\) \(\chi_{18225}(356,\cdot)\) \(\chi_{18225}(371,\cdot)\) \(\chi_{18225}(416,\cdot)\) \(\chi_{18225}(446,\cdot)\) \(\chi_{18225}(461,\cdot)\) \(\chi_{18225}(491,\cdot)\) \(\chi_{18225}(506,\cdot)\) \(\chi_{18225}(536,\cdot)\) \(\chi_{18225}(581,\cdot)\) \(\chi_{18225}(596,\cdot)\) \(\chi_{18225}(641,\cdot)\) \(\chi_{18225}(671,\cdot)\) \(\chi_{18225}(686,\cdot)\) \(\chi_{18225}(716,\cdot)\) \(\chi_{18225}(731,\cdot)\) \(\chi_{18225}(761,\cdot)\) \(\chi_{18225}(806,\cdot)\) \(\chi_{18225}(821,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{1215})$
Fixed field: Number field defined by a degree 2430 polynomial (not computed)

Values on generators

\((4376,13852)\) → \((e\left(\frac{211}{486}\right),e\left(\frac{4}{5}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(19\)
\( \chi_{ 18225 }(686, a) \) \(-1\)\(1\)\(e\left(\frac{569}{2430}\right)\)\(e\left(\frac{569}{1215}\right)\)\(e\left(\frac{14}{243}\right)\)\(e\left(\frac{569}{810}\right)\)\(e\left(\frac{1619}{2430}\right)\)\(e\left(\frac{413}{1215}\right)\)\(e\left(\frac{709}{2430}\right)\)\(e\left(\frac{1138}{1215}\right)\)\(e\left(\frac{589}{810}\right)\)\(e\left(\frac{187}{405}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 18225 }(686,a) \;\) at \(\;a = \) e.g. 2