sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(18225, base_ring=CyclotomicField(2430))
M = H._module
chi = DirichletCharacter(H, M([1055,1944]))
pari:[g,chi] = znchar(Mod(686,18225))
| Modulus: | \(18225\) | |
| Conductor: | \(18225\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(2430\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{18225}(11,\cdot)\)
\(\chi_{18225}(41,\cdot)\)
\(\chi_{18225}(56,\cdot)\)
\(\chi_{18225}(86,\cdot)\)
\(\chi_{18225}(131,\cdot)\)
\(\chi_{18225}(146,\cdot)\)
\(\chi_{18225}(191,\cdot)\)
\(\chi_{18225}(221,\cdot)\)
\(\chi_{18225}(236,\cdot)\)
\(\chi_{18225}(266,\cdot)\)
\(\chi_{18225}(281,\cdot)\)
\(\chi_{18225}(311,\cdot)\)
\(\chi_{18225}(356,\cdot)\)
\(\chi_{18225}(371,\cdot)\)
\(\chi_{18225}(416,\cdot)\)
\(\chi_{18225}(446,\cdot)\)
\(\chi_{18225}(461,\cdot)\)
\(\chi_{18225}(491,\cdot)\)
\(\chi_{18225}(506,\cdot)\)
\(\chi_{18225}(536,\cdot)\)
\(\chi_{18225}(581,\cdot)\)
\(\chi_{18225}(596,\cdot)\)
\(\chi_{18225}(641,\cdot)\)
\(\chi_{18225}(671,\cdot)\)
\(\chi_{18225}(686,\cdot)\)
\(\chi_{18225}(716,\cdot)\)
\(\chi_{18225}(731,\cdot)\)
\(\chi_{18225}(761,\cdot)\)
\(\chi_{18225}(806,\cdot)\)
\(\chi_{18225}(821,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((4376,13852)\) → \((e\left(\frac{211}{486}\right),e\left(\frac{4}{5}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(19\) |
| \( \chi_{ 18225 }(686, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{569}{2430}\right)\) | \(e\left(\frac{569}{1215}\right)\) | \(e\left(\frac{14}{243}\right)\) | \(e\left(\frac{569}{810}\right)\) | \(e\left(\frac{1619}{2430}\right)\) | \(e\left(\frac{413}{1215}\right)\) | \(e\left(\frac{709}{2430}\right)\) | \(e\left(\frac{1138}{1215}\right)\) | \(e\left(\frac{589}{810}\right)\) | \(e\left(\frac{187}{405}\right)\) |
sage:chi.jacobi_sum(n)