sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(18225, base_ring=CyclotomicField(2430))
M = H._module
chi = DirichletCharacter(H, M([1265,1701]))
pari:[g,chi] = znchar(Mod(434,18225))
| Modulus: | \(18225\) | |
| Conductor: | \(18225\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(2430\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{18225}(14,\cdot)\)
\(\chi_{18225}(29,\cdot)\)
\(\chi_{18225}(59,\cdot)\)
\(\chi_{18225}(104,\cdot)\)
\(\chi_{18225}(119,\cdot)\)
\(\chi_{18225}(164,\cdot)\)
\(\chi_{18225}(194,\cdot)\)
\(\chi_{18225}(209,\cdot)\)
\(\chi_{18225}(239,\cdot)\)
\(\chi_{18225}(254,\cdot)\)
\(\chi_{18225}(284,\cdot)\)
\(\chi_{18225}(329,\cdot)\)
\(\chi_{18225}(344,\cdot)\)
\(\chi_{18225}(389,\cdot)\)
\(\chi_{18225}(419,\cdot)\)
\(\chi_{18225}(434,\cdot)\)
\(\chi_{18225}(464,\cdot)\)
\(\chi_{18225}(479,\cdot)\)
\(\chi_{18225}(509,\cdot)\)
\(\chi_{18225}(554,\cdot)\)
\(\chi_{18225}(569,\cdot)\)
\(\chi_{18225}(614,\cdot)\)
\(\chi_{18225}(644,\cdot)\)
\(\chi_{18225}(659,\cdot)\)
\(\chi_{18225}(689,\cdot)\)
\(\chi_{18225}(704,\cdot)\)
\(\chi_{18225}(734,\cdot)\)
\(\chi_{18225}(779,\cdot)\)
\(\chi_{18225}(794,\cdot)\)
\(\chi_{18225}(839,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((4376,13852)\) → \((e\left(\frac{253}{486}\right),e\left(\frac{7}{10}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(19\) |
| \( \chi_{ 18225 }(434, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{268}{1215}\right)\) | \(e\left(\frac{536}{1215}\right)\) | \(e\left(\frac{295}{486}\right)\) | \(e\left(\frac{268}{405}\right)\) | \(e\left(\frac{1271}{2430}\right)\) | \(e\left(\frac{319}{2430}\right)\) | \(e\left(\frac{2011}{2430}\right)\) | \(e\left(\frac{1072}{1215}\right)\) | \(e\left(\frac{113}{405}\right)\) | \(e\left(\frac{58}{405}\right)\) |
sage:chi.jacobi_sum(n)