Properties

Label 18225.434
Modulus $18225$
Conductor $18225$
Order $2430$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(18225, base_ring=CyclotomicField(2430)) M = H._module chi = DirichletCharacter(H, M([1265,1701]))
 
Copy content pari:[g,chi] = znchar(Mod(434,18225))
 

Basic properties

Modulus: \(18225\)
Conductor: \(18225\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(2430\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 18225.cr

\(\chi_{18225}(14,\cdot)\) \(\chi_{18225}(29,\cdot)\) \(\chi_{18225}(59,\cdot)\) \(\chi_{18225}(104,\cdot)\) \(\chi_{18225}(119,\cdot)\) \(\chi_{18225}(164,\cdot)\) \(\chi_{18225}(194,\cdot)\) \(\chi_{18225}(209,\cdot)\) \(\chi_{18225}(239,\cdot)\) \(\chi_{18225}(254,\cdot)\) \(\chi_{18225}(284,\cdot)\) \(\chi_{18225}(329,\cdot)\) \(\chi_{18225}(344,\cdot)\) \(\chi_{18225}(389,\cdot)\) \(\chi_{18225}(419,\cdot)\) \(\chi_{18225}(434,\cdot)\) \(\chi_{18225}(464,\cdot)\) \(\chi_{18225}(479,\cdot)\) \(\chi_{18225}(509,\cdot)\) \(\chi_{18225}(554,\cdot)\) \(\chi_{18225}(569,\cdot)\) \(\chi_{18225}(614,\cdot)\) \(\chi_{18225}(644,\cdot)\) \(\chi_{18225}(659,\cdot)\) \(\chi_{18225}(689,\cdot)\) \(\chi_{18225}(704,\cdot)\) \(\chi_{18225}(734,\cdot)\) \(\chi_{18225}(779,\cdot)\) \(\chi_{18225}(794,\cdot)\) \(\chi_{18225}(839,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{1215})$
Fixed field: Number field defined by a degree 2430 polynomial (not computed)

Values on generators

\((4376,13852)\) → \((e\left(\frac{253}{486}\right),e\left(\frac{7}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(19\)
\( \chi_{ 18225 }(434, a) \) \(-1\)\(1\)\(e\left(\frac{268}{1215}\right)\)\(e\left(\frac{536}{1215}\right)\)\(e\left(\frac{295}{486}\right)\)\(e\left(\frac{268}{405}\right)\)\(e\left(\frac{1271}{2430}\right)\)\(e\left(\frac{319}{2430}\right)\)\(e\left(\frac{2011}{2430}\right)\)\(e\left(\frac{1072}{1215}\right)\)\(e\left(\frac{113}{405}\right)\)\(e\left(\frac{58}{405}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 18225 }(434,a) \;\) at \(\;a = \) e.g. 2