Properties

Label 18225.1171
Modulus $18225$
Conductor $6075$
Order $405$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(18225, base_ring=CyclotomicField(810)) M = H._module chi = DirichletCharacter(H, M([610,486]))
 
Copy content pari:[g,chi] = znchar(Mod(1171,18225))
 

Basic properties

Modulus: \(18225\)
Conductor: \(6075\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(405\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{6075}(4396,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 18225.cb

\(\chi_{18225}(46,\cdot)\) \(\chi_{18225}(91,\cdot)\) \(\chi_{18225}(181,\cdot)\) \(\chi_{18225}(316,\cdot)\) \(\chi_{18225}(361,\cdot)\) \(\chi_{18225}(496,\cdot)\) \(\chi_{18225}(586,\cdot)\) \(\chi_{18225}(631,\cdot)\) \(\chi_{18225}(721,\cdot)\) \(\chi_{18225}(766,\cdot)\) \(\chi_{18225}(856,\cdot)\) \(\chi_{18225}(991,\cdot)\) \(\chi_{18225}(1036,\cdot)\) \(\chi_{18225}(1171,\cdot)\) \(\chi_{18225}(1261,\cdot)\) \(\chi_{18225}(1306,\cdot)\) \(\chi_{18225}(1396,\cdot)\) \(\chi_{18225}(1441,\cdot)\) \(\chi_{18225}(1531,\cdot)\) \(\chi_{18225}(1666,\cdot)\) \(\chi_{18225}(1711,\cdot)\) \(\chi_{18225}(1846,\cdot)\) \(\chi_{18225}(1936,\cdot)\) \(\chi_{18225}(1981,\cdot)\) \(\chi_{18225}(2071,\cdot)\) \(\chi_{18225}(2116,\cdot)\) \(\chi_{18225}(2206,\cdot)\) \(\chi_{18225}(2341,\cdot)\) \(\chi_{18225}(2386,\cdot)\) \(\chi_{18225}(2521,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{405})$
Fixed field: Number field defined by a degree 405 polynomial (not computed)

Values on generators

\((4376,13852)\) → \((e\left(\frac{61}{81}\right),e\left(\frac{3}{5}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(19\)
\( \chi_{ 18225 }(1171, a) \) \(1\)\(1\)\(e\left(\frac{143}{405}\right)\)\(e\left(\frac{286}{405}\right)\)\(e\left(\frac{58}{81}\right)\)\(e\left(\frac{8}{135}\right)\)\(e\left(\frac{293}{405}\right)\)\(e\left(\frac{172}{405}\right)\)\(e\left(\frac{28}{405}\right)\)\(e\left(\frac{167}{405}\right)\)\(e\left(\frac{88}{135}\right)\)\(e\left(\frac{38}{135}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 18225 }(1171,a) \;\) at \(\;a = \) e.g. 2