sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1815, base_ring=CyclotomicField(220))
M = H._module
chi = DirichletCharacter(H, M([110,165,152]))
         
     
    
    
        
        pari:[g,chi] = znchar(Mod(383,1815))
         
     
    
  
   | Modulus: |  \(1815\) |   |  
   | Conductor: |  \(1815\) |  
    
         
        sage:chi.conductor()
          
     
    
    
         
        pari:znconreyconductor(g,chi)
          
     
    
 |  
   | Order: |  \(220\) |  
    
         
        sage:chi.multiplicative_order()
          
     
    
    
         
        pari:charorder(g,chi)
          
     
    
 |  
   | Real: |   no  |  
   | Primitive: |   yes |   
    
         
        sage:chi.is_primitive()
          
     
    
    
         
        pari:#znconreyconductor(g,chi)==1
          
     
    
 |  
     | Minimal:  |  yes |  
       | Parity:  |  even |  
    
         
        sage:chi.is_odd()
          
     
    
    
         
        pari:zncharisodd(g,chi)
          
     
    
 |  
   
  \(\chi_{1815}(38,\cdot)\)
  \(\chi_{1815}(47,\cdot)\)
  \(\chi_{1815}(53,\cdot)\)
  \(\chi_{1815}(92,\cdot)\)
  \(\chi_{1815}(113,\cdot)\)
  \(\chi_{1815}(137,\cdot)\)
  \(\chi_{1815}(152,\cdot)\)
  \(\chi_{1815}(158,\cdot)\)
  \(\chi_{1815}(203,\cdot)\)
  \(\chi_{1815}(212,\cdot)\)
  \(\chi_{1815}(218,\cdot)\)
  \(\chi_{1815}(257,\cdot)\)
  \(\chi_{1815}(278,\cdot)\)
  \(\chi_{1815}(302,\cdot)\)
  \(\chi_{1815}(317,\cdot)\)
  \(\chi_{1815}(368,\cdot)\)
  \(\chi_{1815}(377,\cdot)\)
  \(\chi_{1815}(383,\cdot)\)
  \(\chi_{1815}(422,\cdot)\)
  \(\chi_{1815}(443,\cdot)\)
  \(\chi_{1815}(467,\cdot)\)
  \(\chi_{1815}(482,\cdot)\)
  \(\chi_{1815}(488,\cdot)\)
  \(\chi_{1815}(533,\cdot)\)
  \(\chi_{1815}(542,\cdot)\)
  \(\chi_{1815}(548,\cdot)\)
  \(\chi_{1815}(587,\cdot)\)
  \(\chi_{1815}(647,\cdot)\)
  \(\chi_{1815}(653,\cdot)\)
  \(\chi_{1815}(698,\cdot)\)
 ... 
    
        
        sage:chi.galois_orbit()
         
     
    
    
        
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((1211,727,1696)\) → \((-1,-i,e\left(\frac{38}{55}\right))\)
  
    
      
        | \(a\) | 
        \(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(13\) | \(14\) | \(16\) | \(17\) | \(19\) | \(23\) |       
    
    
      | \( \chi_{ 1815 }(383, a) \) | 
      \(1\) | \(1\) | \(e\left(\frac{207}{220}\right)\) | \(e\left(\frac{97}{110}\right)\) | \(e\left(\frac{129}{220}\right)\) | \(e\left(\frac{181}{220}\right)\) | \(e\left(\frac{7}{220}\right)\) | \(e\left(\frac{29}{55}\right)\) | \(e\left(\frac{42}{55}\right)\) | \(e\left(\frac{23}{220}\right)\) | \(e\left(\frac{93}{110}\right)\) | \(e\left(\frac{5}{44}\right)\) |     
  
 
    
        
        sage:chi.jacobi_sum(n)