sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1740, base_ring=CyclotomicField(14))
M = H._module
chi = DirichletCharacter(H, M([7,7,0,9]))
pari:[g,chi] = znchar(Mod(71,1740))
\(\chi_{1740}(71,\cdot)\)
\(\chi_{1740}(671,\cdot)\)
\(\chi_{1740}(731,\cdot)\)
\(\chi_{1740}(1211,\cdot)\)
\(\chi_{1740}(1571,\cdot)\)
\(\chi_{1740}(1691,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((871,581,697,901)\) → \((-1,-1,1,e\left(\frac{9}{14}\right))\)
\(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 1740 }(71, a) \) |
\(1\) | \(1\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(1\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(1\) | \(e\left(\frac{6}{7}\right)\) |
sage:chi.jacobi_sum(n)