Properties

Label 1734.19
Modulus $1734$
Conductor $289$
Order $136$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1734, base_ring=CyclotomicField(136)) M = H._module chi = DirichletCharacter(H, M([0,7]))
 
Copy content pari:[g,chi] = znchar(Mod(19,1734))
 

Basic properties

Modulus: \(1734\)
Conductor: \(289\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(136\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{289}(19,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1734.q

\(\chi_{1734}(19,\cdot)\) \(\chi_{1734}(25,\cdot)\) \(\chi_{1734}(43,\cdot)\) \(\chi_{1734}(49,\cdot)\) \(\chi_{1734}(121,\cdot)\) \(\chi_{1734}(127,\cdot)\) \(\chi_{1734}(145,\cdot)\) \(\chi_{1734}(151,\cdot)\) \(\chi_{1734}(223,\cdot)\) \(\chi_{1734}(229,\cdot)\) \(\chi_{1734}(247,\cdot)\) \(\chi_{1734}(253,\cdot)\) \(\chi_{1734}(325,\cdot)\) \(\chi_{1734}(331,\cdot)\) \(\chi_{1734}(349,\cdot)\) \(\chi_{1734}(355,\cdot)\) \(\chi_{1734}(427,\cdot)\) \(\chi_{1734}(433,\cdot)\) \(\chi_{1734}(451,\cdot)\) \(\chi_{1734}(457,\cdot)\) \(\chi_{1734}(529,\cdot)\) \(\chi_{1734}(535,\cdot)\) \(\chi_{1734}(553,\cdot)\) \(\chi_{1734}(559,\cdot)\) \(\chi_{1734}(631,\cdot)\) \(\chi_{1734}(637,\cdot)\) \(\chi_{1734}(655,\cdot)\) \(\chi_{1734}(661,\cdot)\) \(\chi_{1734}(739,\cdot)\) \(\chi_{1734}(763,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{136})$
Fixed field: Number field defined by a degree 136 polynomial (not computed)

Values on generators

\((1157,1159)\) → \((1,e\left(\frac{7}{136}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 1734 }(19, a) \) \(1\)\(1\)\(e\left(\frac{107}{136}\right)\)\(e\left(\frac{133}{136}\right)\)\(e\left(\frac{25}{136}\right)\)\(e\left(\frac{3}{34}\right)\)\(e\left(\frac{49}{68}\right)\)\(e\left(\frac{65}{136}\right)\)\(e\left(\frac{39}{68}\right)\)\(e\left(\frac{59}{136}\right)\)\(e\left(\frac{63}{136}\right)\)\(e\left(\frac{13}{17}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1734 }(19,a) \;\) at \(\;a = \) e.g. 2