Properties

Label 1734.1669
Modulus $1734$
Conductor $17$
Order $16$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1734, base_ring=CyclotomicField(16)) M = H._module chi = DirichletCharacter(H, M([0,1]))
 
Copy content pari:[g,chi] = znchar(Mod(1669,1734))
 

Basic properties

Modulus: \(1734\)
Conductor: \(17\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(16\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{17}(3,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1734.j

\(\chi_{1734}(643,\cdot)\) \(\chi_{1734}(709,\cdot)\) \(\chi_{1734}(907,\cdot)\) \(\chi_{1734}(1081,\cdot)\) \(\chi_{1734}(1231,\cdot)\) \(\chi_{1734}(1405,\cdot)\) \(\chi_{1734}(1603,\cdot)\) \(\chi_{1734}(1669,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: Number field defined by a degree 16 polynomial

Values on generators

\((1157,1159)\) → \((1,e\left(\frac{1}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 1734 }(1669, a) \) \(-1\)\(1\)\(e\left(\frac{5}{16}\right)\)\(e\left(\frac{11}{16}\right)\)\(e\left(\frac{7}{16}\right)\)\(i\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{15}{16}\right)\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{13}{16}\right)\)\(e\left(\frac{9}{16}\right)\)\(1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1734 }(1669,a) \;\) at \(\;a = \) e.g. 2