sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1725, base_ring=CyclotomicField(110))
M = H._module
chi = DirichletCharacter(H, M([55,11,70]))
pari:[g,chi] = znchar(Mod(404,1725))
| Modulus: | \(1725\) | |
| Conductor: | \(1725\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(110\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1725}(29,\cdot)\)
\(\chi_{1725}(59,\cdot)\)
\(\chi_{1725}(104,\cdot)\)
\(\chi_{1725}(119,\cdot)\)
\(\chi_{1725}(164,\cdot)\)
\(\chi_{1725}(179,\cdot)\)
\(\chi_{1725}(209,\cdot)\)
\(\chi_{1725}(239,\cdot)\)
\(\chi_{1725}(269,\cdot)\)
\(\chi_{1725}(284,\cdot)\)
\(\chi_{1725}(404,\cdot)\)
\(\chi_{1725}(464,\cdot)\)
\(\chi_{1725}(509,\cdot)\)
\(\chi_{1725}(554,\cdot)\)
\(\chi_{1725}(584,\cdot)\)
\(\chi_{1725}(614,\cdot)\)
\(\chi_{1725}(629,\cdot)\)
\(\chi_{1725}(719,\cdot)\)
\(\chi_{1725}(794,\cdot)\)
\(\chi_{1725}(809,\cdot)\)
\(\chi_{1725}(854,\cdot)\)
\(\chi_{1725}(869,\cdot)\)
\(\chi_{1725}(929,\cdot)\)
\(\chi_{1725}(959,\cdot)\)
\(\chi_{1725}(1064,\cdot)\)
\(\chi_{1725}(1094,\cdot)\)
\(\chi_{1725}(1139,\cdot)\)
\(\chi_{1725}(1154,\cdot)\)
\(\chi_{1725}(1214,\cdot)\)
\(\chi_{1725}(1244,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1151,277,1201)\) → \((-1,e\left(\frac{1}{10}\right),e\left(\frac{7}{11}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(19\) |
| \( \chi_{ 1725 }(404, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{48}{55}\right)\) | \(e\left(\frac{41}{55}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{34}{55}\right)\) | \(e\left(\frac{91}{110}\right)\) | \(e\left(\frac{89}{110}\right)\) | \(e\left(\frac{51}{110}\right)\) | \(e\left(\frac{27}{55}\right)\) | \(e\left(\frac{14}{55}\right)\) | \(e\left(\frac{19}{55}\right)\) |
sage:chi.jacobi_sum(n)