sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(169, base_ring=CyclotomicField(26))
M = H._module
chi = DirichletCharacter(H, M([2]))
pari:[g,chi] = znchar(Mod(40,169))
Modulus: | \(169\) | |
Conductor: | \(169\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(13\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{169}(14,\cdot)\)
\(\chi_{169}(27,\cdot)\)
\(\chi_{169}(40,\cdot)\)
\(\chi_{169}(53,\cdot)\)
\(\chi_{169}(66,\cdot)\)
\(\chi_{169}(79,\cdot)\)
\(\chi_{169}(92,\cdot)\)
\(\chi_{169}(105,\cdot)\)
\(\chi_{169}(118,\cdot)\)
\(\chi_{169}(131,\cdot)\)
\(\chi_{169}(144,\cdot)\)
\(\chi_{169}(157,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(2\) → \(e\left(\frac{1}{13}\right)\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
\( \chi_{ 169 }(40, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{12}{13}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)