sage: H = DirichletGroup(169)
pari: g = idealstar(,169,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 156 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{156}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{169}(2,\cdot)$ |
First 32 of 156 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{169}(1,\cdot)\) | 169.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{169}(2,\cdot)\) | 169.l | 156 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{156}\right)\) | \(e\left(\frac{31}{39}\right)\) | \(e\left(\frac{1}{78}\right)\) | \(e\left(\frac{3}{52}\right)\) | \(e\left(\frac{125}{156}\right)\) | \(e\left(\frac{107}{156}\right)\) | \(e\left(\frac{1}{52}\right)\) | \(e\left(\frac{23}{39}\right)\) | \(e\left(\frac{5}{78}\right)\) | \(e\left(\frac{103}{156}\right)\) |
\(\chi_{169}(3,\cdot)\) | 169.i | 39 | yes | \(1\) | \(1\) | \(e\left(\frac{31}{39}\right)\) | \(e\left(\frac{22}{39}\right)\) | \(e\left(\frac{23}{39}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{14}{39}\right)\) | \(e\left(\frac{2}{39}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{5}{39}\right)\) | \(e\left(\frac{37}{39}\right)\) | \(e\left(\frac{34}{39}\right)\) |
\(\chi_{169}(4,\cdot)\) | 169.k | 78 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{78}\right)\) | \(e\left(\frac{23}{39}\right)\) | \(e\left(\frac{1}{39}\right)\) | \(e\left(\frac{3}{26}\right)\) | \(e\left(\frac{47}{78}\right)\) | \(e\left(\frac{29}{78}\right)\) | \(e\left(\frac{1}{26}\right)\) | \(e\left(\frac{7}{39}\right)\) | \(e\left(\frac{5}{39}\right)\) | \(e\left(\frac{25}{78}\right)\) |
\(\chi_{169}(5,\cdot)\) | 169.j | 52 | yes | \(-1\) | \(1\) | \(e\left(\frac{3}{52}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{3}{26}\right)\) | \(e\left(\frac{27}{52}\right)\) | \(e\left(\frac{11}{52}\right)\) | \(e\left(\frac{9}{52}\right)\) | \(e\left(\frac{9}{52}\right)\) | \(e\left(\frac{4}{13}\right)\) | \(e\left(\frac{15}{26}\right)\) | \(e\left(\frac{49}{52}\right)\) |
\(\chi_{169}(6,\cdot)\) | 169.l | 156 | yes | \(-1\) | \(1\) | \(e\left(\frac{125}{156}\right)\) | \(e\left(\frac{14}{39}\right)\) | \(e\left(\frac{47}{78}\right)\) | \(e\left(\frac{11}{52}\right)\) | \(e\left(\frac{25}{156}\right)\) | \(e\left(\frac{115}{156}\right)\) | \(e\left(\frac{21}{52}\right)\) | \(e\left(\frac{28}{39}\right)\) | \(e\left(\frac{1}{78}\right)\) | \(e\left(\frac{83}{156}\right)\) |
\(\chi_{169}(7,\cdot)\) | 169.l | 156 | yes | \(-1\) | \(1\) | \(e\left(\frac{107}{156}\right)\) | \(e\left(\frac{2}{39}\right)\) | \(e\left(\frac{29}{78}\right)\) | \(e\left(\frac{9}{52}\right)\) | \(e\left(\frac{115}{156}\right)\) | \(e\left(\frac{61}{156}\right)\) | \(e\left(\frac{3}{52}\right)\) | \(e\left(\frac{4}{39}\right)\) | \(e\left(\frac{67}{78}\right)\) | \(e\left(\frac{101}{156}\right)\) |
\(\chi_{169}(8,\cdot)\) | 169.j | 52 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{52}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{1}{26}\right)\) | \(e\left(\frac{9}{52}\right)\) | \(e\left(\frac{21}{52}\right)\) | \(e\left(\frac{3}{52}\right)\) | \(e\left(\frac{3}{52}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{5}{26}\right)\) | \(e\left(\frac{51}{52}\right)\) |
\(\chi_{169}(9,\cdot)\) | 169.i | 39 | yes | \(1\) | \(1\) | \(e\left(\frac{23}{39}\right)\) | \(e\left(\frac{5}{39}\right)\) | \(e\left(\frac{7}{39}\right)\) | \(e\left(\frac{4}{13}\right)\) | \(e\left(\frac{28}{39}\right)\) | \(e\left(\frac{4}{39}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{10}{39}\right)\) | \(e\left(\frac{35}{39}\right)\) | \(e\left(\frac{29}{39}\right)\) |
\(\chi_{169}(10,\cdot)\) | 169.k | 78 | yes | \(1\) | \(1\) | \(e\left(\frac{5}{78}\right)\) | \(e\left(\frac{37}{39}\right)\) | \(e\left(\frac{5}{39}\right)\) | \(e\left(\frac{15}{26}\right)\) | \(e\left(\frac{1}{78}\right)\) | \(e\left(\frac{67}{78}\right)\) | \(e\left(\frac{5}{26}\right)\) | \(e\left(\frac{35}{39}\right)\) | \(e\left(\frac{25}{39}\right)\) | \(e\left(\frac{47}{78}\right)\) |
\(\chi_{169}(11,\cdot)\) | 169.l | 156 | yes | \(-1\) | \(1\) | \(e\left(\frac{103}{156}\right)\) | \(e\left(\frac{34}{39}\right)\) | \(e\left(\frac{25}{78}\right)\) | \(e\left(\frac{49}{52}\right)\) | \(e\left(\frac{83}{156}\right)\) | \(e\left(\frac{101}{156}\right)\) | \(e\left(\frac{51}{52}\right)\) | \(e\left(\frac{29}{39}\right)\) | \(e\left(\frac{47}{78}\right)\) | \(e\left(\frac{1}{156}\right)\) |
\(\chi_{169}(12,\cdot)\) | 169.h | 26 | yes | \(1\) | \(1\) | \(e\left(\frac{21}{26}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{7}{26}\right)\) | \(e\left(\frac{25}{26}\right)\) | \(e\left(\frac{11}{26}\right)\) | \(e\left(\frac{11}{26}\right)\) | \(e\left(\frac{4}{13}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{5}{26}\right)\) |
\(\chi_{169}(14,\cdot)\) | 169.g | 13 | yes | \(1\) | \(1\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{12}{13}\right)\) | \(e\left(\frac{4}{13}\right)\) |
\(\chi_{169}(15,\cdot)\) | 169.l | 156 | yes | \(-1\) | \(1\) | \(e\left(\frac{133}{156}\right)\) | \(e\left(\frac{28}{39}\right)\) | \(e\left(\frac{55}{78}\right)\) | \(e\left(\frac{35}{52}\right)\) | \(e\left(\frac{89}{156}\right)\) | \(e\left(\frac{35}{156}\right)\) | \(e\left(\frac{29}{52}\right)\) | \(e\left(\frac{17}{39}\right)\) | \(e\left(\frac{41}{78}\right)\) | \(e\left(\frac{127}{156}\right)\) |
\(\chi_{169}(16,\cdot)\) | 169.i | 39 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{39}\right)\) | \(e\left(\frac{7}{39}\right)\) | \(e\left(\frac{2}{39}\right)\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{8}{39}\right)\) | \(e\left(\frac{29}{39}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{14}{39}\right)\) | \(e\left(\frac{10}{39}\right)\) | \(e\left(\frac{25}{39}\right)\) |
\(\chi_{169}(17,\cdot)\) | 169.k | 78 | yes | \(1\) | \(1\) | \(e\left(\frac{73}{78}\right)\) | \(e\left(\frac{2}{39}\right)\) | \(e\left(\frac{34}{39}\right)\) | \(e\left(\frac{11}{26}\right)\) | \(e\left(\frac{77}{78}\right)\) | \(e\left(\frac{11}{78}\right)\) | \(e\left(\frac{21}{26}\right)\) | \(e\left(\frac{4}{39}\right)\) | \(e\left(\frac{14}{39}\right)\) | \(e\left(\frac{31}{78}\right)\) |
\(\chi_{169}(18,\cdot)\) | 169.j | 52 | yes | \(-1\) | \(1\) | \(e\left(\frac{31}{52}\right)\) | \(e\left(\frac{12}{13}\right)\) | \(e\left(\frac{5}{26}\right)\) | \(e\left(\frac{19}{52}\right)\) | \(e\left(\frac{27}{52}\right)\) | \(e\left(\frac{41}{52}\right)\) | \(e\left(\frac{41}{52}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{25}{26}\right)\) | \(e\left(\frac{21}{52}\right)\) |
\(\chi_{169}(19,\cdot)\) | 169.f | 12 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-i\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(i\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) |
\(\chi_{169}(20,\cdot)\) | 169.l | 156 | yes | \(-1\) | \(1\) | \(e\left(\frac{11}{156}\right)\) | \(e\left(\frac{29}{39}\right)\) | \(e\left(\frac{11}{78}\right)\) | \(e\left(\frac{33}{52}\right)\) | \(e\left(\frac{127}{156}\right)\) | \(e\left(\frac{85}{156}\right)\) | \(e\left(\frac{11}{52}\right)\) | \(e\left(\frac{19}{39}\right)\) | \(e\left(\frac{55}{78}\right)\) | \(e\left(\frac{41}{156}\right)\) |
\(\chi_{169}(21,\cdot)\) | 169.j | 52 | yes | \(-1\) | \(1\) | \(e\left(\frac{25}{52}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{25}{26}\right)\) | \(e\left(\frac{17}{52}\right)\) | \(e\left(\frac{5}{52}\right)\) | \(e\left(\frac{23}{52}\right)\) | \(e\left(\frac{23}{52}\right)\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{21}{26}\right)\) | \(e\left(\frac{27}{52}\right)\) |
\(\chi_{169}(22,\cdot)\) | 169.c | 3 | no | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{169}(23,\cdot)\) | 169.e | 6 | no | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{169}(24,\cdot)\) | 169.l | 156 | yes | \(-1\) | \(1\) | \(e\left(\frac{127}{156}\right)\) | \(e\left(\frac{37}{39}\right)\) | \(e\left(\frac{49}{78}\right)\) | \(e\left(\frac{17}{52}\right)\) | \(e\left(\frac{119}{156}\right)\) | \(e\left(\frac{17}{156}\right)\) | \(e\left(\frac{23}{52}\right)\) | \(e\left(\frac{35}{39}\right)\) | \(e\left(\frac{11}{78}\right)\) | \(e\left(\frac{133}{156}\right)\) |
\(\chi_{169}(25,\cdot)\) | 169.h | 26 | yes | \(1\) | \(1\) | \(e\left(\frac{3}{26}\right)\) | \(e\left(\frac{4}{13}\right)\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{1}{26}\right)\) | \(e\left(\frac{11}{26}\right)\) | \(e\left(\frac{9}{26}\right)\) | \(e\left(\frac{9}{26}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{23}{26}\right)\) |
\(\chi_{169}(27,\cdot)\) | 169.g | 13 | yes | \(1\) | \(1\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{8}{13}\right)\) |
\(\chi_{169}(28,\cdot)\) | 169.l | 156 | yes | \(-1\) | \(1\) | \(e\left(\frac{109}{156}\right)\) | \(e\left(\frac{25}{39}\right)\) | \(e\left(\frac{31}{78}\right)\) | \(e\left(\frac{15}{52}\right)\) | \(e\left(\frac{53}{156}\right)\) | \(e\left(\frac{119}{156}\right)\) | \(e\left(\frac{5}{52}\right)\) | \(e\left(\frac{11}{39}\right)\) | \(e\left(\frac{77}{78}\right)\) | \(e\left(\frac{151}{156}\right)\) |
\(\chi_{169}(29,\cdot)\) | 169.i | 39 | yes | \(1\) | \(1\) | \(e\left(\frac{10}{39}\right)\) | \(e\left(\frac{31}{39}\right)\) | \(e\left(\frac{20}{39}\right)\) | \(e\left(\frac{4}{13}\right)\) | \(e\left(\frac{2}{39}\right)\) | \(e\left(\frac{17}{39}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{23}{39}\right)\) | \(e\left(\frac{22}{39}\right)\) | \(e\left(\frac{16}{39}\right)\) |
\(\chi_{169}(30,\cdot)\) | 169.k | 78 | yes | \(1\) | \(1\) | \(e\left(\frac{67}{78}\right)\) | \(e\left(\frac{20}{39}\right)\) | \(e\left(\frac{28}{39}\right)\) | \(e\left(\frac{19}{26}\right)\) | \(e\left(\frac{29}{78}\right)\) | \(e\left(\frac{71}{78}\right)\) | \(e\left(\frac{15}{26}\right)\) | \(e\left(\frac{1}{39}\right)\) | \(e\left(\frac{23}{39}\right)\) | \(e\left(\frac{37}{78}\right)\) |
\(\chi_{169}(31,\cdot)\) | 169.j | 52 | yes | \(-1\) | \(1\) | \(e\left(\frac{7}{52}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{7}{26}\right)\) | \(e\left(\frac{11}{52}\right)\) | \(e\left(\frac{43}{52}\right)\) | \(e\left(\frac{21}{52}\right)\) | \(e\left(\frac{21}{52}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{9}{26}\right)\) | \(e\left(\frac{45}{52}\right)\) |
\(\chi_{169}(32,\cdot)\) | 169.l | 156 | yes | \(-1\) | \(1\) | \(e\left(\frac{5}{156}\right)\) | \(e\left(\frac{38}{39}\right)\) | \(e\left(\frac{5}{78}\right)\) | \(e\left(\frac{15}{52}\right)\) | \(e\left(\frac{1}{156}\right)\) | \(e\left(\frac{67}{156}\right)\) | \(e\left(\frac{5}{52}\right)\) | \(e\left(\frac{37}{39}\right)\) | \(e\left(\frac{25}{78}\right)\) | \(e\left(\frac{47}{156}\right)\) |
\(\chi_{169}(33,\cdot)\) | 169.l | 156 | yes | \(-1\) | \(1\) | \(e\left(\frac{71}{156}\right)\) | \(e\left(\frac{17}{39}\right)\) | \(e\left(\frac{71}{78}\right)\) | \(e\left(\frac{5}{52}\right)\) | \(e\left(\frac{139}{156}\right)\) | \(e\left(\frac{109}{156}\right)\) | \(e\left(\frac{19}{52}\right)\) | \(e\left(\frac{34}{39}\right)\) | \(e\left(\frac{43}{78}\right)\) | \(e\left(\frac{137}{156}\right)\) |
\(\chi_{169}(34,\cdot)\) | 169.j | 52 | yes | \(-1\) | \(1\) | \(e\left(\frac{49}{52}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{23}{26}\right)\) | \(e\left(\frac{25}{52}\right)\) | \(e\left(\frac{41}{52}\right)\) | \(e\left(\frac{43}{52}\right)\) | \(e\left(\frac{43}{52}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{11}{26}\right)\) | \(e\left(\frac{3}{52}\right)\) |