Properties

Label 16830.8017
Modulus $16830$
Conductor $8415$
Order $240$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(16830, base_ring=CyclotomicField(240)) M = H._module chi = DirichletCharacter(H, M([160,60,144,45]))
 
Copy content pari:[g,chi] = znchar(Mod(8017,16830))
 

Basic properties

Modulus: \(16830\)
Conductor: \(8415\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(240\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{8415}(8017,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 16830.ko

\(\chi_{16830}(367,\cdot)\) \(\chi_{16830}(643,\cdot)\) \(\chi_{16830}(907,\cdot)\) \(\chi_{16830}(1093,\cdot)\) \(\chi_{16830}(1417,\cdot)\) \(\chi_{16830}(1897,\cdot)\) \(\chi_{16830}(2407,\cdot)\) \(\chi_{16830}(2623,\cdot)\) \(\chi_{16830}(3067,\cdot)\) \(\chi_{16830}(3193,\cdot)\) \(\chi_{16830}(3463,\cdot)\) \(\chi_{16830}(4057,\cdot)\) \(\chi_{16830}(4723,\cdot)\) \(\chi_{16830}(5107,\cdot)\) \(\chi_{16830}(5173,\cdot)\) \(\chi_{16830}(5443,\cdot)\) \(\chi_{16830}(5503,\cdot)\) \(\chi_{16830}(6097,\cdot)\) \(\chi_{16830}(6253,\cdot)\) \(\chi_{16830}(6637,\cdot)\) \(\chi_{16830}(6703,\cdot)\) \(\chi_{16830}(6763,\cdot)\) \(\chi_{16830}(7027,\cdot)\) \(\chi_{16830}(7033,\cdot)\) \(\chi_{16830}(7483,\cdot)\) \(\chi_{16830}(7627,\cdot)\) \(\chi_{16830}(8017,\cdot)\) \(\chi_{16830}(8167,\cdot)\) \(\chi_{16830}(8233,\cdot)\) \(\chi_{16830}(8563,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{240})$
Fixed field: Number field defined by a degree 240 polynomial (not computed)

Values on generators

\((7481,3367,1531,8911)\) → \((e\left(\frac{2}{3}\right),i,e\left(\frac{3}{5}\right),e\left(\frac{3}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(13\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)\(47\)
\( \chi_{ 16830 }(8017, a) \) \(1\)\(1\)\(e\left(\frac{43}{240}\right)\)\(e\left(\frac{13}{30}\right)\)\(e\left(\frac{37}{40}\right)\)\(e\left(\frac{43}{48}\right)\)\(e\left(\frac{193}{240}\right)\)\(e\left(\frac{149}{240}\right)\)\(e\left(\frac{51}{80}\right)\)\(e\left(\frac{47}{240}\right)\)\(e\left(\frac{19}{24}\right)\)\(e\left(\frac{7}{15}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 16830 }(8017,a) \;\) at \(\;a = \) e.g. 2