sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(16830, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([20,45,18,45]))
pari:[g,chi] = znchar(Mod(11173,16830))
\(\chi_{16830}(1993,\cdot)\)
\(\chi_{16830}(2257,\cdot)\)
\(\chi_{16830}(2767,\cdot)\)
\(\chi_{16830}(4297,\cdot)\)
\(\chi_{16830}(5827,\cdot)\)
\(\chi_{16830}(7603,\cdot)\)
\(\chi_{16830}(8113,\cdot)\)
\(\chi_{16830}(8377,\cdot)\)
\(\chi_{16830}(9643,\cdot)\)
\(\chi_{16830}(9907,\cdot)\)
\(\chi_{16830}(11173,\cdot)\)
\(\chi_{16830}(11437,\cdot)\)
\(\chi_{16830}(13477,\cdot)\)
\(\chi_{16830}(13723,\cdot)\)
\(\chi_{16830}(15253,\cdot)\)
\(\chi_{16830}(16783,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((7481,3367,1531,8911)\) → \((e\left(\frac{1}{3}\right),-i,e\left(\frac{3}{10}\right),-i)\)
| \(a\) |
\(-1\) | \(1\) | \(7\) | \(13\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) | \(47\) |
| \( \chi_{ 16830 }(11173, a) \) |
\(1\) | \(1\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{13}{60}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{41}{60}\right)\) | \(e\left(\frac{13}{60}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{49}{60}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{29}{60}\right)\) |
sage:chi.jacobi_sum(n)