Properties

Label 1682.h
Modulus $1682$
Conductor $841$
Order $58$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1682, base_ring=CyclotomicField(58)) M = H._module chi = DirichletCharacter(H, M([25])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(57,1682)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(1682\)
Conductor: \(841\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(58\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 841.h
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{29})$
Fixed field: Number field defined by a degree 58 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(7\) \(9\) \(11\) \(13\) \(15\) \(17\) \(19\) \(21\)
\(\chi_{1682}(57,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{58}\right)\) \(e\left(\frac{5}{29}\right)\) \(e\left(\frac{2}{29}\right)\) \(e\left(\frac{27}{29}\right)\) \(e\left(\frac{53}{58}\right)\) \(e\left(\frac{10}{29}\right)\) \(e\left(\frac{37}{58}\right)\) \(e\left(\frac{9}{58}\right)\) \(e\left(\frac{23}{58}\right)\) \(e\left(\frac{31}{58}\right)\)
\(\chi_{1682}(115,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{58}\right)\) \(e\left(\frac{10}{29}\right)\) \(e\left(\frac{4}{29}\right)\) \(e\left(\frac{25}{29}\right)\) \(e\left(\frac{19}{58}\right)\) \(e\left(\frac{20}{29}\right)\) \(e\left(\frac{45}{58}\right)\) \(e\left(\frac{47}{58}\right)\) \(e\left(\frac{17}{58}\right)\) \(e\left(\frac{33}{58}\right)\)
\(\chi_{1682}(173,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{58}\right)\) \(e\left(\frac{15}{29}\right)\) \(e\left(\frac{6}{29}\right)\) \(e\left(\frac{23}{29}\right)\) \(e\left(\frac{43}{58}\right)\) \(e\left(\frac{1}{29}\right)\) \(e\left(\frac{53}{58}\right)\) \(e\left(\frac{27}{58}\right)\) \(e\left(\frac{11}{58}\right)\) \(e\left(\frac{35}{58}\right)\)
\(\chi_{1682}(231,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{58}\right)\) \(e\left(\frac{20}{29}\right)\) \(e\left(\frac{8}{29}\right)\) \(e\left(\frac{21}{29}\right)\) \(e\left(\frac{9}{58}\right)\) \(e\left(\frac{11}{29}\right)\) \(e\left(\frac{3}{58}\right)\) \(e\left(\frac{7}{58}\right)\) \(e\left(\frac{5}{58}\right)\) \(e\left(\frac{37}{58}\right)\)
\(\chi_{1682}(289,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{58}\right)\) \(e\left(\frac{25}{29}\right)\) \(e\left(\frac{10}{29}\right)\) \(e\left(\frac{19}{29}\right)\) \(e\left(\frac{33}{58}\right)\) \(e\left(\frac{21}{29}\right)\) \(e\left(\frac{11}{58}\right)\) \(e\left(\frac{45}{58}\right)\) \(e\left(\frac{57}{58}\right)\) \(e\left(\frac{39}{58}\right)\)
\(\chi_{1682}(347,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{58}\right)\) \(e\left(\frac{1}{29}\right)\) \(e\left(\frac{12}{29}\right)\) \(e\left(\frac{17}{29}\right)\) \(e\left(\frac{57}{58}\right)\) \(e\left(\frac{2}{29}\right)\) \(e\left(\frac{19}{58}\right)\) \(e\left(\frac{25}{58}\right)\) \(e\left(\frac{51}{58}\right)\) \(e\left(\frac{41}{58}\right)\)
\(\chi_{1682}(405,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{58}\right)\) \(e\left(\frac{6}{29}\right)\) \(e\left(\frac{14}{29}\right)\) \(e\left(\frac{15}{29}\right)\) \(e\left(\frac{23}{58}\right)\) \(e\left(\frac{12}{29}\right)\) \(e\left(\frac{27}{58}\right)\) \(e\left(\frac{5}{58}\right)\) \(e\left(\frac{45}{58}\right)\) \(e\left(\frac{43}{58}\right)\)
\(\chi_{1682}(463,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{58}\right)\) \(e\left(\frac{11}{29}\right)\) \(e\left(\frac{16}{29}\right)\) \(e\left(\frac{13}{29}\right)\) \(e\left(\frac{47}{58}\right)\) \(e\left(\frac{22}{29}\right)\) \(e\left(\frac{35}{58}\right)\) \(e\left(\frac{43}{58}\right)\) \(e\left(\frac{39}{58}\right)\) \(e\left(\frac{45}{58}\right)\)
\(\chi_{1682}(521,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{58}\right)\) \(e\left(\frac{16}{29}\right)\) \(e\left(\frac{18}{29}\right)\) \(e\left(\frac{11}{29}\right)\) \(e\left(\frac{13}{58}\right)\) \(e\left(\frac{3}{29}\right)\) \(e\left(\frac{43}{58}\right)\) \(e\left(\frac{23}{58}\right)\) \(e\left(\frac{33}{58}\right)\) \(e\left(\frac{47}{58}\right)\)
\(\chi_{1682}(579,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{58}\right)\) \(e\left(\frac{21}{29}\right)\) \(e\left(\frac{20}{29}\right)\) \(e\left(\frac{9}{29}\right)\) \(e\left(\frac{37}{58}\right)\) \(e\left(\frac{13}{29}\right)\) \(e\left(\frac{51}{58}\right)\) \(e\left(\frac{3}{58}\right)\) \(e\left(\frac{27}{58}\right)\) \(e\left(\frac{49}{58}\right)\)
\(\chi_{1682}(637,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{58}\right)\) \(e\left(\frac{26}{29}\right)\) \(e\left(\frac{22}{29}\right)\) \(e\left(\frac{7}{29}\right)\) \(e\left(\frac{3}{58}\right)\) \(e\left(\frac{23}{29}\right)\) \(e\left(\frac{1}{58}\right)\) \(e\left(\frac{41}{58}\right)\) \(e\left(\frac{21}{58}\right)\) \(e\left(\frac{51}{58}\right)\)
\(\chi_{1682}(695,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{58}\right)\) \(e\left(\frac{2}{29}\right)\) \(e\left(\frac{24}{29}\right)\) \(e\left(\frac{5}{29}\right)\) \(e\left(\frac{27}{58}\right)\) \(e\left(\frac{4}{29}\right)\) \(e\left(\frac{9}{58}\right)\) \(e\left(\frac{21}{58}\right)\) \(e\left(\frac{15}{58}\right)\) \(e\left(\frac{53}{58}\right)\)
\(\chi_{1682}(753,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{58}\right)\) \(e\left(\frac{7}{29}\right)\) \(e\left(\frac{26}{29}\right)\) \(e\left(\frac{3}{29}\right)\) \(e\left(\frac{51}{58}\right)\) \(e\left(\frac{14}{29}\right)\) \(e\left(\frac{17}{58}\right)\) \(e\left(\frac{1}{58}\right)\) \(e\left(\frac{9}{58}\right)\) \(e\left(\frac{55}{58}\right)\)
\(\chi_{1682}(811,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{58}\right)\) \(e\left(\frac{12}{29}\right)\) \(e\left(\frac{28}{29}\right)\) \(e\left(\frac{1}{29}\right)\) \(e\left(\frac{17}{58}\right)\) \(e\left(\frac{24}{29}\right)\) \(e\left(\frac{25}{58}\right)\) \(e\left(\frac{39}{58}\right)\) \(e\left(\frac{3}{58}\right)\) \(e\left(\frac{57}{58}\right)\)
\(\chi_{1682}(869,\cdot)\) \(1\) \(1\) \(e\left(\frac{57}{58}\right)\) \(e\left(\frac{17}{29}\right)\) \(e\left(\frac{1}{29}\right)\) \(e\left(\frac{28}{29}\right)\) \(e\left(\frac{41}{58}\right)\) \(e\left(\frac{5}{29}\right)\) \(e\left(\frac{33}{58}\right)\) \(e\left(\frac{19}{58}\right)\) \(e\left(\frac{55}{58}\right)\) \(e\left(\frac{1}{58}\right)\)
\(\chi_{1682}(927,\cdot)\) \(1\) \(1\) \(e\left(\frac{55}{58}\right)\) \(e\left(\frac{22}{29}\right)\) \(e\left(\frac{3}{29}\right)\) \(e\left(\frac{26}{29}\right)\) \(e\left(\frac{7}{58}\right)\) \(e\left(\frac{15}{29}\right)\) \(e\left(\frac{41}{58}\right)\) \(e\left(\frac{57}{58}\right)\) \(e\left(\frac{49}{58}\right)\) \(e\left(\frac{3}{58}\right)\)
\(\chi_{1682}(985,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{58}\right)\) \(e\left(\frac{27}{29}\right)\) \(e\left(\frac{5}{29}\right)\) \(e\left(\frac{24}{29}\right)\) \(e\left(\frac{31}{58}\right)\) \(e\left(\frac{25}{29}\right)\) \(e\left(\frac{49}{58}\right)\) \(e\left(\frac{37}{58}\right)\) \(e\left(\frac{43}{58}\right)\) \(e\left(\frac{5}{58}\right)\)
\(\chi_{1682}(1043,\cdot)\) \(1\) \(1\) \(e\left(\frac{51}{58}\right)\) \(e\left(\frac{3}{29}\right)\) \(e\left(\frac{7}{29}\right)\) \(e\left(\frac{22}{29}\right)\) \(e\left(\frac{55}{58}\right)\) \(e\left(\frac{6}{29}\right)\) \(e\left(\frac{57}{58}\right)\) \(e\left(\frac{17}{58}\right)\) \(e\left(\frac{37}{58}\right)\) \(e\left(\frac{7}{58}\right)\)
\(\chi_{1682}(1101,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{58}\right)\) \(e\left(\frac{8}{29}\right)\) \(e\left(\frac{9}{29}\right)\) \(e\left(\frac{20}{29}\right)\) \(e\left(\frac{21}{58}\right)\) \(e\left(\frac{16}{29}\right)\) \(e\left(\frac{7}{58}\right)\) \(e\left(\frac{55}{58}\right)\) \(e\left(\frac{31}{58}\right)\) \(e\left(\frac{9}{58}\right)\)
\(\chi_{1682}(1159,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{58}\right)\) \(e\left(\frac{13}{29}\right)\) \(e\left(\frac{11}{29}\right)\) \(e\left(\frac{18}{29}\right)\) \(e\left(\frac{45}{58}\right)\) \(e\left(\frac{26}{29}\right)\) \(e\left(\frac{15}{58}\right)\) \(e\left(\frac{35}{58}\right)\) \(e\left(\frac{25}{58}\right)\) \(e\left(\frac{11}{58}\right)\)
\(\chi_{1682}(1217,\cdot)\) \(1\) \(1\) \(e\left(\frac{45}{58}\right)\) \(e\left(\frac{18}{29}\right)\) \(e\left(\frac{13}{29}\right)\) \(e\left(\frac{16}{29}\right)\) \(e\left(\frac{11}{58}\right)\) \(e\left(\frac{7}{29}\right)\) \(e\left(\frac{23}{58}\right)\) \(e\left(\frac{15}{58}\right)\) \(e\left(\frac{19}{58}\right)\) \(e\left(\frac{13}{58}\right)\)
\(\chi_{1682}(1275,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{58}\right)\) \(e\left(\frac{23}{29}\right)\) \(e\left(\frac{15}{29}\right)\) \(e\left(\frac{14}{29}\right)\) \(e\left(\frac{35}{58}\right)\) \(e\left(\frac{17}{29}\right)\) \(e\left(\frac{31}{58}\right)\) \(e\left(\frac{53}{58}\right)\) \(e\left(\frac{13}{58}\right)\) \(e\left(\frac{15}{58}\right)\)
\(\chi_{1682}(1333,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{58}\right)\) \(e\left(\frac{28}{29}\right)\) \(e\left(\frac{17}{29}\right)\) \(e\left(\frac{12}{29}\right)\) \(e\left(\frac{1}{58}\right)\) \(e\left(\frac{27}{29}\right)\) \(e\left(\frac{39}{58}\right)\) \(e\left(\frac{33}{58}\right)\) \(e\left(\frac{7}{58}\right)\) \(e\left(\frac{17}{58}\right)\)
\(\chi_{1682}(1391,\cdot)\) \(1\) \(1\) \(e\left(\frac{39}{58}\right)\) \(e\left(\frac{4}{29}\right)\) \(e\left(\frac{19}{29}\right)\) \(e\left(\frac{10}{29}\right)\) \(e\left(\frac{25}{58}\right)\) \(e\left(\frac{8}{29}\right)\) \(e\left(\frac{47}{58}\right)\) \(e\left(\frac{13}{58}\right)\) \(e\left(\frac{1}{58}\right)\) \(e\left(\frac{19}{58}\right)\)
\(\chi_{1682}(1449,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{58}\right)\) \(e\left(\frac{9}{29}\right)\) \(e\left(\frac{21}{29}\right)\) \(e\left(\frac{8}{29}\right)\) \(e\left(\frac{49}{58}\right)\) \(e\left(\frac{18}{29}\right)\) \(e\left(\frac{55}{58}\right)\) \(e\left(\frac{51}{58}\right)\) \(e\left(\frac{53}{58}\right)\) \(e\left(\frac{21}{58}\right)\)
\(\chi_{1682}(1507,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{58}\right)\) \(e\left(\frac{14}{29}\right)\) \(e\left(\frac{23}{29}\right)\) \(e\left(\frac{6}{29}\right)\) \(e\left(\frac{15}{58}\right)\) \(e\left(\frac{28}{29}\right)\) \(e\left(\frac{5}{58}\right)\) \(e\left(\frac{31}{58}\right)\) \(e\left(\frac{47}{58}\right)\) \(e\left(\frac{23}{58}\right)\)
\(\chi_{1682}(1565,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{58}\right)\) \(e\left(\frac{19}{29}\right)\) \(e\left(\frac{25}{29}\right)\) \(e\left(\frac{4}{29}\right)\) \(e\left(\frac{39}{58}\right)\) \(e\left(\frac{9}{29}\right)\) \(e\left(\frac{13}{58}\right)\) \(e\left(\frac{11}{58}\right)\) \(e\left(\frac{41}{58}\right)\) \(e\left(\frac{25}{58}\right)\)
\(\chi_{1682}(1623,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{58}\right)\) \(e\left(\frac{24}{29}\right)\) \(e\left(\frac{27}{29}\right)\) \(e\left(\frac{2}{29}\right)\) \(e\left(\frac{5}{58}\right)\) \(e\left(\frac{19}{29}\right)\) \(e\left(\frac{21}{58}\right)\) \(e\left(\frac{49}{58}\right)\) \(e\left(\frac{35}{58}\right)\) \(e\left(\frac{27}{58}\right)\)